Recent advances in artificial intelligence, particularly in the field of deep learning, have enabled researchers to create compelling algorithms for medical image analysis. Histological slides of basal cell carcinomas (BCCs), the most frequent skin tumor, are accessed by pathologists on a daily basis and are therefore well suited for automated prescreening by neural networks for the identification of cancerous regions and swift tumor classification.In this proof-of-concept study, we implemented an accurate and intuitively interpretable artificial neural network (ANN) for the detection of BCCs in histological whole-slide images (WSIs). Furthermore, we identified and compared differences in the diagnostic histological features and recognition patterns relevant for machine learning algorithms vs. expert pathologists.An attention-ANN was trained with WSIs of BCCs to identify tumor regions (n = 820). The diagnosis-relevant regions used by the ANN were compared to regions of interest for pathologists, detected by eye-tracking techniques.This ANN accurately identified BCC tumor regions on images of histologic slides (area under the ROC curve: 0.993, 95% CI: 0.990-0.995; sensitivity: 0.965, 95% CI: 0.951-0.979; specificity: 0.910, 95% CI: 0.859-0.960). The ANN implicitly calculated a weight matrix, indicating the regions of a histological image that are important for the prediction of the network. Interestingly, compared to pathologists' eye-tracking results, machine learning algorithms rely on significantly different recognition patterns for tumor identification (p < 10).To conclude, we found on the example of BCC WSIs, that histopathological images can be efficiently and interpretably analyzed by state-of-the-art machine learning techniques. Neural networks and machine learning algorithms can potentially enhance diagnostic precision in digital pathology and uncover hitherto unused classification patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41379-020-00712-7DOI Listing

Publication Analysis

Top Keywords

artificial neural
8
neural networks
8
basal cell
8
cell carcinomas
8
recognition patterns
8
machine learning
8
learning algorithms
8
tumor regions
8
regions
6
histological
5

Similar Publications

Current neural network models of primate vision focus on replicating overall levels of behavioral accuracy, often neglecting perceptual decisions' rich, dynamic nature. Here, we introduce a novel computational framework to model the dynamics of human behavioral choices by learning to align the temporal dynamics of a recurrent neural network (RNN) to human reaction times (RTs). We describe an approximation that allows us to constrain the number of time steps an RNN takes to solve a task with human RTs.

View Article and Find Full Text PDF

Giant cell arteritis (GCA), a systemic vasculitis affecting large and medium-sized arteries, poses significant diagnostic and management challenges, particularly in preventing irreversible complications like vision loss. Recent advancements in artificial intelligence (AI) technologies, including machine learning (ML) and deep learning (DL), offer promising solutions to enhance diagnostic accuracy and optimize treatment strategies for GCA. This systematic review, conducted according to the PRISMA 2020 guidelines, synthesizes existing literature on AI applications in GCA care, with a focus on diagnostic accuracy, treatment outcomes, and predictive modeling.

View Article and Find Full Text PDF

Many artificial neural networks (ANNs) trained with ecologically plausible objectives on naturalistic data align with behavior and neural representations in biological systems. Here, we show that this alignment is a consequence of convergence onto the same representations by high-performing ANNs and by brains. We developed a method to identify stimuli that systematically vary the degree of inter-model representation agreement.

View Article and Find Full Text PDF

The application of deep learning in early enamel demineralization detection.

PeerJ

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Objective: The study aims to develop a diagnostic model using intraoral photographs to accurately detect and classify early detection of enamel demineralization on tooth surfaces.

Methods: A retrospective analysis was conducted with 208 patients aged 14 to 44. A total of 624 high-quality digital images captured under standardized conditions were used to construct a deep learning model based on the Mask region-based convolutional neural network (Mask R-CNN).

View Article and Find Full Text PDF

Background: The progression and severity of periodontitis (PD) are associated with the release of extracellular vesicles by periodontal tissue cells. However, the precise mechanisms through which exosome-related genes (ERGs) influence PD remain unclear. This study aimed to investigate the role and potential mechanisms of key exosome-related genes in PD using transcriptome profiling at the single-cell level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!