The identification of cell borders ('segmentation') in microscopy images constitutes a bottleneck for large-scale experiments. For the model organism Saccharomyces cerevisiae, current segmentation methods face challenges when cells bud, crowd, or exhibit irregular features. We present a convolutional neural network (CNN) named YeaZ, the underlying training set of high-quality segmented yeast images (>10 000 cells) including mutants, stressed cells, and time courses, as well as a graphical user interface and a web application ( www.quantsysbio.com/data-and-software ) to efficiently employ, test, and expand the system. A key feature is a cell-cell boundary test which avoids the need for fluorescent markers. Our CNN is highly accurate, including for buds, and outperforms existing methods on benchmark images, indicating it transfers well to other conditions. To demonstrate how efficient large-scale image processing uncovers new biology, we analyze the geometries of ≈2200 wild-type and cyclin mutant cells and find that morphogenesis control occurs unexpectedly early and gradually.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665014 | PMC |
http://dx.doi.org/10.1038/s41467-020-19557-4 | DOI Listing |
BMC Oral Health
January 2025
Pediatric Dentistry Department, Faculty of Dentistry, Başkent University, 06490, Ankara, Turkey.
Background: Hypodontia is the absence of one or more teeth in the primary or permanent dentition during development, and radiographic imaging is the most common method of diagnosis. However, in recent years, artificial intelligence-based decision support systems have been employed to make highly accurate diagnoses. The aim of this study was to classify single premolar agenesis, multiple premolar agenesis, and without tooth agenesis using various artificial intelligence approaches.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Ophthalmology, The Affiliated Hospital of Guilin Medical University, Guilin, China.
Optical coherence tomography angiography (OCTA) is an emerging, non-invasive technique increasingly utilized for retinal vasculature imaging. Analysis of OCTA images can effectively diagnose retinal diseases, unfortunately, complex vascular structures within OCTA images possess significant challenges for automated segmentation. A novel, fully convolutional dense connected residual network is proposed to effectively segment the vascular regions within OCTA images.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science, Kebri Dehar University, 250, Kebri Dehar, Ethiopia.
The Internet of Things (IoT)-based smart solutions have been developed to predict water quality and they are becoming an increasingly important means of providing efficient solutions through communication technologies. IoT systems are used for enabling connection between various devices based on the ability to gather and collect information. Furthermore, IoT systems are designed to address the environment and the automation industry.
View Article and Find Full Text PDFCommun Med (Lond)
January 2025
Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Leibniz ScienceCampus Primate Cognition and German Center for Child and Adolescent Health (DZKJ), Göttingen, Germany.
Background: To assess the integrity of the developing nervous system, the Prechtl general movement assessment (GMA) is recognized for its clinical value in diagnosing neurological impairments in early infancy. GMA has been increasingly augmented through machine learning approaches intending to scale-up its application, circumvent costs in the training of human assessors and further standardize classification of spontaneous motor patterns. Available deep learning tools, all of which are based on single sensor modalities, are however still considerably inferior to that of well-trained human assessors.
View Article and Find Full Text PDFClin Neuroradiol
January 2025
Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
Introduction: Ventriculoperitoneal shunts (VPS) are an essential part of the treatment of hydrocephalus, with numerous valve models available with different ways of indicating pressure levels. The model types often need to be identified on X‑rays to assess pressure levels using a matching template. Artificial intelligence (AI), in particular deep learning, is ideally suited to automate repetitive tasks such as identifying different VPS valve models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!