The spike aspartic acid-614 to glycine (D614G) substitution is prevalent in global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775736 | PMC |
http://dx.doi.org/10.1126/science.abe8499 | DOI Listing |
J Virol
January 2025
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Coronaviruses (CoVs) encode non-structural proteins (nsp's) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease in non-structural protein 14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The enzymatic activity of nsp14-ExoN is enhanced in the presence of the cofactor nsp10.
View Article and Find Full Text PDFMaladapted immigrants may reduce wild population productivity and resilience, depending on the degree of fitness mismatch between dispersers and locals. Thus, domesticated individuals escaping into wild populations is a key conservation concern. In Prince William Sound, Alaska, over 700 million pink salmon () are released annually from hatcheries, providing a natural experiment to characterize the mechanisms underlying impacts to wild populations.
View Article and Find Full Text PDFInt J Sports Physiol Perform
January 2025
Institute of Fitness & Health, IST University of Applied Sciences, Düsseldorf, Germany.
Purpose: Competitive cheerleading (cheersport) is a physically demanding sport; however, there is a lack of information regarding its acute physiological responses during training or competition in these athletes. Thus, this study aimed to investigate these responses during both training sessions and simulated cheerleading competition routines (full-outs) among elite cheersport athletes.
Methods: Six Coed and 10 All Girl elite cheerleaders were included in this study.
Quant Plant Biol
December 2024
Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Trees, living for centuries, accumulate somatic mutations in their growing trunks and branches, causing genetic divergence within a single tree. Stem cell lineages in a shoot apical meristem accumulate mutations independently and diverge from each other. In plants, somatic mutations can alter the genetic composition of reproductive organs and gametes, impacting future generations.
View Article and Find Full Text PDFPLoS One
January 2025
Computer Science and Engineering Discipline, Khulna University, Khulna, Bangladesh.
The objective of the max-cut problem is to cut any graph in such a way that the total weight of the edges that are cut off is maximum in both subsets of vertices that are divided due to the cut of the edges. Although it is an elementary graph partitioning problem, it is one of the most challenging combinatorial optimization-based problems, and tons of application areas make this problem highly admissible. Due to its admissibility, the problem is solved using the Harris Hawk Optimization algorithm (HHO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!