A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lateralized alpha activity and slow potential shifts over visual cortex track the time course of both endogenous and exogenous orienting of attention. | LitMetric

Lateralized alpha activity and slow potential shifts over visual cortex track the time course of both endogenous and exogenous orienting of attention.

Neuroimage

Department of Psychology, University of California, San Diego 92092, USA; Department of Psychological and Brain Sciences, Dartmouth College, USA.

Published: January 2021

Spatial attention can be oriented endogenously, based on current task goals, or exogenously, triggered by salient events in the environment. Based upon literature demonstrating differences in the time course and neural substrates of each type of orienting, these two attention systems are often treated as fundamentally distinct. However, recent studies suggest that rhythmic neural activity in the alpha band (8-13 Hz) and slow waves in the event-related potential (ERP) may emerge over parietal-occipital cortex following both endogenous and exogenous attention cues. To assess whether these neural changes index common processes of spatial attention, we conducted two within-subject experiments varying the two main dimensions over which endogenous and exogenous attention tasks typically differ: cue informativity (spatially predictive vs. non-predictive) and cue format (centrally vs. peripherally presented). This task design allowed us to tease apart neural changes related to top-down goals and those driven by the reflexive orienting of spatial attention, and examine their interactions in a novel hybrid cross-modal attention task. Our data demonstrate that both central and peripheral cues elicit lateralized ERPs over parietal-occipital cortex, though at different points in time, consistent with these ERPs reflecting the orienting of spatial attention. Lateralized alpha activity was also present across all tasks, emerging rapidly for peripheral cues and sustaining longer for spatially informative cues. Overall, these data indicate that distinct slow-wave ERPs index the spatial orienting of endogenous and exogenous attention, while lateralized alpha activity represents a common signature of visual-cortical biasing in anticipation of potential targets across both types of attention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2020.117495DOI Listing

Publication Analysis

Top Keywords

endogenous exogenous
16
spatial attention
16
lateralized alpha
12
alpha activity
12
exogenous attention
12
attention
11
time course
8
orienting attention
8
parietal-occipital cortex
8
neural changes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!