Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The exact pathogenic mechanism causes hair miniaturization during androgenic alopecia (AGA) has not been delineated. Recent evidence has shown a role for non-coding regulatory RNAs, such as microRNAs (miRNAs), in skin and hair disease. There is no reported information about the role of miRNAs in hair epithelial cells of AGA.
Objectives: To investigate the roles of miRNAs affecting AGA in normal and patient's epithelial hair cells.
Methods: Normal follicular stem and progenitor cells, as well as follicular patient's stem cells, were sorted from hair follicles, and a miRNA q-PCR profiling to compare the expression of 748 miRNA (miRs) in sorted cells were performed. Further, we examined the putative functional implication of the most differentially regulated miRNA (miR-324-3p) in differentiation, proliferation and migration of cultured keratinocytes by qRT-PCR, immunofluorescence, and scratch assay. To explore the mechanisms underlying the effects of miR-324-3p, we used specific chemical inhibitors targeting pathways influenced by miR-324-3p.
Result: We provide a comprehensive assessment of the "miRNome" of normal and AGA follicular stem and progenitor cells. Differentially regulated miRNA signatures highlight several miRNA candidates including miRNA-324-3p as mis regulated in patient's stem cells. We find that miR-324-3p promotes differentiation and migration of cultured keratinocytes likely through the regulation of mitogen-activated protein kinase (MAPK) and transforming growth factor (TGF)-β signaling. Importantly, pharmacological inhibition of the TGF-β signaling pathway using Alk5i promotes hair shaft elongation in an organ-culture system.
Conclusion: Together, we offer a platform for understanding miRNA dynamic regulation in follicular stem and progenitor cells in baldness and highlight miR-324-3p as a promising target for its treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jdermsci.2020.11.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!