Novel naphthylamide derivatives as dual-target antifungal inhibitors: Design, synthesis and biological evaluation.

Eur J Med Chem

Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China. Electronic address:

Published: January 2021

Fungal infections have become a serious medical problem due to the high infection rate and the frequent emergence of drug resistance. Squalene epoxidase (SE) and 14α-demethylase (CYP51) are considered as the important antifungal targets, they can show the synergistic effect on antifungal therapy. In the study, a series of active fragments were screened through the method of De Novo Link, and these active fragments with the higher Ludi_Scores were selected, which can show the obvious binding ability with the dual targets (SE, CYP51). Subsequently, three series of target compounds with naphthyl amide scaffolds were constructed by connecting these core fragments, and their structures were synthesized. Most of compounds showed the antifungal activity in the treatment of pathogenic fungi. It was worth noting that compounds 10b-5 and 17a-2 with the excellent broad-spectrum antifungal properties also exhibited the obvious antifungal effects against drug-resistant fungi. Preliminary mechanism study has proved these target compounds can block the biosynthesis of ergosterol by inhibiting the activity of dual targets (SE, CYP51). Furthermore, target compounds 10-5 and 17a-2 with low toxicity side effects also demonstrated the excellent pharmacological effects in vivo. The molecular docking and ADMET prediction were performed, which can guide the optimization of subsequent lead compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2020.112991DOI Listing

Publication Analysis

Top Keywords

target compounds
12
active fragments
8
dual targets
8
targets cyp51
8
antifungal
6
compounds
6
novel naphthylamide
4
naphthylamide derivatives
4
derivatives dual-target
4
dual-target antifungal
4

Similar Publications

The development of small molecule drugs that target protein binders is the central goal in medicinal chemistry. During the lead compound development process, hundreds or even thousands of compounds are synthesized, with the primary focus on their binding affinity to protein targets. Typically, IC or EC values are used to rank these compounds.

View Article and Find Full Text PDF

Design, Synthesis, and Evaluation of Selective PDE4 Inhibitors for the Therapy of Pulmonary Injury.

J Med Chem

January 2025

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China.

Pulmonary inflammation is the main cause of lung injury. Phosphodiesterase 4 (PDE4) is a promising anti-inflammatory target for the treatment of respiratory diseases. Herein, we designed and synthesized 43 compounds in two novel series of benzimidazole derivatives as PDE4 inhibitors.

View Article and Find Full Text PDF

The gram-negative, facultative anaerobic bacterium Morganella morganii is linked to a number of illnesses, including nosocomial infections and urinary tract infections (UTIs). A clinical isolate from a UTI patient in Bangladesh was subjected to high-throughput whole genome sequencing and extensive bioinformatics analysis in order to gather knowledge about the genomic basis of bacterial defenses and pathogenicity in M. morganii.

View Article and Find Full Text PDF

Background: Mitochondria-driven oxidative/redox stress and inflammation play a major role in chronic kidney disease (CKD) pathophysiology. Compounds targeting mitochondrial metabolism may improve mitochondrial function, inflammation, and redox stress; however, there is limited evidence of their efficacy in CKD.

Methods: We conducted a pilot randomized, double-blind, placebo-controlled crossover trial comparing the effects of 1200 mg/day of coenzyme Q10 (CoQ10) or 1000 mg/day of nicotinamide riboside (NR) supplementation to placebo in 25 people with moderate-to-severe CKD (estimated glomerular filtration rate [eGFR] <60mL/min/1.

View Article and Find Full Text PDF

Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!