Cognitive impairment (CI) is a frequent complication affecting people with multiple sclerosis (MS). The causes of CI in MS are not fully understood. Besides MRI measures, few other biomarkers exist to help us predict the development of CI and understand its biology. MicroRNAs (miRs) are relatively stable, non-coding RNA molecules about 22 nucleotides in length that can serve as biomarkers and possible therapeutic targets in several autoimmune and neurodegenerative diseases, including the dementias. In this review, we identify dysregulated miRs in MS that overlap with dysregulated miRs in cognitive disorders and dementia and explore how these overlapping miRs play a role in CI in MS. MiR-15, miR-21, miR-128, miR-132, miR-138, miR-142, miR-146a, miR-155, miR-181, miR-572, and let-7 are known to contribute to various forms of dementia and show abnormal expression in MS. These overlapping miRs are involved in pathways related to apoptosis, neuroinflammation, glutamate toxicity, astrocyte activation, microglial burst activity, synaptic dysfunction, and remyelination. The mechanisms of action suggest that these miRs may be related to CI in MS. From our review, we also delineated miRs that could be neuroprotective in MS, namely miR-23a, miR-219, miR-214, and miR-22. Further studies can help clarify if these miRs are responsible for CI in MS, leading to potential therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2020.117202DOI Listing

Publication Analysis

Top Keywords

mirs
9
multiple sclerosis
8
therapeutic targets
8
dysregulated mirs
8
overlapping mirs
8
hypothesis-generating scoping
4
scoping review
4
review mirs
4
mirs identified
4
identified multiple
4

Similar Publications

In the last decade the important role of small non-coding RNAs such as micro RNAs (miRs) in gene regulation in healthy and disease states became more and more evident. The miR-200-family of miRs has been shown to play a critical role in many diseases such as cancer and neurodegenerative disorders and could be potentially important for diagnosis and treatment. However, the size of miRs of about ~21-23nt provide challenges for their investigation.

View Article and Find Full Text PDF

Exercise promotes peripheral glycolysis in skeletal muscle through miR-204 induction via the HIF-1α pathway.

Sci Rep

January 2025

Laboratory of Biochemistry, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Korea.

The mechanisms underlying exercise-induced insulin sensitization are of great interest, as exercise is a clinically critical intervention for diabetic patients. Some microRNAs (miRs) are secreted from skeletal muscle after exercise where they regulate insulin sensitivity, and have potential as diagnostic markers in diabetic patients. miR-204 is well-known for its involvement in development, cancer, and metabolism; however, its role in exercise-induced glycemic control remains unclear.

View Article and Find Full Text PDF

Micro-ribonucleic acids (miRs) are small, non-coding RNAs, which play an important role in atherosclerotic plaque formation, development, and stability. Plaque destabilization and rupture lead to acute coronary syndromes (ACS). Previous studies have implicated several different miRs in the pathogenesis of atherosclerosis.

View Article and Find Full Text PDF

: Available data suggest the diagnostic potential of testing microRNAs (miRs) in myocardial infarction, but their prognostic value remains unclear. To evaluate the prognostic value of circulating miRs (miR-1, miR-21, miR-133a, miR-208 and miR-499) for predicting major adverse cardiac events (MACEs), including death, non-fatal myocardial infarction (MI) or cardiovascular rehospitalization, in patients with non-ST segment elevation acute coronary syndromes (NSTE-ACS). Our prospective, single-center, observational study included patients (pts) with NSTE-ACS admitted <24 h after symptoms onset and pts with confirmed stable coronary artery disease (SCAD) as controls.

View Article and Find Full Text PDF

Psoriasis is a long-lasting inflammatory skin condition characterized by excessive keratinocyte growth. Recent studies have confirmed abnormal regulation of microRNAs (miRNAs/miRs) in individuals with psoriasis. This study aimed to investigate the function and specific mechanism of action of miR-128a-3p in interleukin-22 (IL-22)-stimulated HaCaT cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!