Background: Although several studies demonstrate prion-like properties of Tau fibrils, the effect of size in the seeding capacity of these aggregates is not fully understood. The aim of this study is to characterize Tau seeds by their size and seeding capacity.
Methods: Tau aggregates were isolated from postmortem AD brain tissue and separated from low molecular weight species by sucrose gradient ultracentrifugation. Biochemical characterization of the different fractions was done by non-reducing Western blotting and aggregate-specific immuno-assays using in house developed anti-Tau monoclonal antibodies, including PT76 which binds to an epitope close to the microtubule-binding domain and, hence, also to K18. Seeding efficiency was then assessed in HEK293 cells expressing K18 FRET sensors.
Results: We observed that upon sonication of Tau aggregates different size-distributed tau aggregates are obtained. In biochemical assays, these forms show higher signals than the non-sonicated material in some aggregation-specific Tau assays. This could be explained by an increased epitope exposure of the smaller aggregates created by the sonication. By analyzing human brain derived and recombinant (K18) Tau aggregates in a cellular FRET assay, it was observed that, in the absence of transfection reagent, sonicated aggregates showed higher aggregation induction. Preparations also showed altered profiles on native PAGE upon sonication and we could further separate different aggregate species based on their molecular weight via sucrose gradients.
Conclusions: This study further elucidates the molecular properties regarding relative aggregate size and seeding efficiency of sonicated vs. non-sonicated high molecular weight Tau species. This information will provide a better knowledge on how sonication, a commonly used technique in the field of study of Tau aggregation, impacts the aggregates. In addition, the description of PT76-based aggregation specific assay is a valuable tool to quantify K18 and human AD Tau fibrils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661158 | PMC |
http://dx.doi.org/10.1186/s12860-020-00320-y | DOI Listing |
Transl Neurodegener
January 2025
Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea.
Alzheimer's disease (AD) is the most common type of dementia. Monoclonal antibodies (MABs) serve as a promising therapeutic approach for AD by selectively targeting key pathogenic factors, such as amyloid-β (Aβ) peptide, tau protein, and neuroinflammation. Specifically, based on their efficacy in removing Aβ plaques from the brains of patients with AD, the U.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.
Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
The ADNI is detailed in Supplemental Acknowledgments.
Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.
Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.
Cell Chem Biol
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge Cambridge CB2 0XY, UK. Electronic address:
Synaptic dysfunction is a primary hallmark of both Alzheimer's and Parkinson's disease, leading to cognitive and behavioral decline. While alpha-synuclein, beta-amyloid, and tau are involved in the physiological functioning of synapses, their pathological aggregation has been linked to synaptopathology. The methodology for studying the small-soluble protein aggregates formed by these proteins is limited.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive function, for which few effective treatments exist. This study investigated the neuroprotective potential of root extract and its key constituents (baicalein, chrysin, oroxylin A) against AD hallmarks. The extract and its constituents exhibited antioxidant activity in the DPPH assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!