Ovarian cancer is one of the leading gynecologic diseases with a high mortality rate worldwide. Current statistical studies on cancer reveal that over the past two decades, the fifth most common cause of death related to cancer in females of the western world is ovarian cancer. In spite of significant strides made in genomics, proteomics and radiomics, there has been little progress in transitioning these research advances into effective clinical administration of ovarian cancer. Consequently, researchers have diverted their attention to finding various molecular processes involved in the development of this cancer and how these processes can be exploited to develop potential chemotherapeutics to treat this cancer. The present review gives an overview of these studies which may update the researchers on where we stand and where to go further. The unfortunate situation with ovarian cancer that still exists is that most patients with it do not show any symptoms until the disease has moved to an advanced stage. Undoubtedly, several targets-based drugs have been developed to treat it, but drug-resistance and the recurrence of this disease are still a problem. For the development of potential chemotherapeutics for ovarian cancer, however, some theoretical approaches have also been applied. A description of such methods and their success in this direction is also covered in this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1568026620999201111155426 | DOI Listing |
Cancer Res Commun
January 2025
Indiana University School of Medicine, Bloomington, IN, United States.
Ovarian cancer is a deadly gynecological disease with frequent recurrence. Current treatments for patients include platinum-based therapy regimens with PARP inhibitors specific for HR-deficient high-grade serous ovarian cancers (HGSOCs). Despite initial effectiveness, patients inevitably develop disease progression as tumor cells acquire resistance.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Molecular and Biotechnology, Atomic Energy Commission of Syria (AECS), Syria.
Ovarian cancer is a common and lethal malignancy among women, whereas chemoresistance is one of the major challenges to its treatment and prognosis. Chemoresistance is a multifactorial phenomenon, involving various mechanisms that collectively modify the cell's response to treatment. Among the changes that arise in cells after acquiring chemoresistance is miRNA dysregulation.
View Article and Find Full Text PDFWe recently reported on the development of a unique cancer-targeting peptide called NAF-1 (derived from CISD2/NAF-1). NAF-1 selectively permeates the plasma membrane (PM) of cancer cells, but not healthy cells, causing the activation of apoptotic and ferroptotic cell death pathways specifically in cancer cells. NAF-1 also targets and shrinks human breast and ovarian cancer tumors in a xenograft mice model system without any apparent side effects.
View Article and Find Full Text PDFDrug Dev Res
February 2025
Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China.
Ovarian cancer is the seventh most common lethal tumor among women in the world. FOXM1 is a transcription factor implicated in the initiation and progression of ovarian cancer by regulating key oncogenic genes. The role of regulatory regions in regulating the expression of FOXM1 in ovarian cancer is not completely clarified.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2025
Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
TWIST1 is aberrantly expressed in ovarian cancer (OC). MFAP2 is a downstream target of TWIST1, and we previously found MFAP2 facilitated OC development by activating FOXM1/β-catenin. We planned to investigate the mechanisms of TWIST1 in OC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!