A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular dynamic study on PTEN frameshift mutations in breast cancer provide c2 domain as a potential biomarker. | LitMetric

Molecular dynamic study on PTEN frameshift mutations in breast cancer provide c2 domain as a potential biomarker.

J Biomol Struct Dyn

Bioinformatics Programming Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore, India.

Published: April 2022

PTEN is a tumour suppressor gene known for regulating apoptosis, cell growth, and many other pathways. It is one of the most frequently mutated genes comprising the phosphatase domain (PD) and C terminal domain (C2). Direct therapeutic methods are not applicable for targeting PTEN because once gets mutated, it needs restoration. For mutant detection and restoration using PTEN mRNA there is a need to explore various mutations taking place in PTEN, identify their particular domains, and study their interactions within the cellular system. Here, we have tried to highlight a few such regions in the mutated PTEN of breast cancer patients. In this study, we have selected the top-most-occurring PTEN mutation in breast cancer and compared them to determine the specific properties of each mutation and its effect on functionality. Molecular dynamic simulation for 50 ns was performed on five structures to compare the structural behaviour of mutated PTEN in the system. Our finding suggests that frameshift mutations are more damaging and affect the c2 domain. Frameshift mutant fs_ACTT is the highest occurring as well as the most damaging mutation in all the compared structures. Docking study shows that substitution mutations D92H and R130Q causes loss of binding ability towards PIP2 in normal PTEN, interfering the dephosphorylation process. Overall, the C2 domain is more frequently mutated, and the amino acid residues in the C2 domain show more fluctuations compared to the other regions. Our study can provide the basis for selecting frequently mutated C2 domain as a potential therapeutic marker.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2020.1845802DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
frequently mutated
12
pten
9
molecular dynamic
8
frameshift mutations
8
domain potential
8
mutated pten
8
domain
7
mutated
6
study
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!