Protein carbonylation: molecular mechanisms, biological implications, and analytical approaches.

Free Radic Res

Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan.

Published: April 2021

Proteins are oxidatively modified by a large number of reactive species including reactive oxygen species, lipid peroxidation-derived aldehydes, and reducing sugars. Among divergent oxidative modifications, the introduction of carbonyl groups such as aldehyde, ketone, and lactam into the amino acid side chains of proteins is a major hallmark for oxidative damage to proteins, and is termed "protein carbonylation". Detection and quantification of protein carbonyls are commonly performed to determine the level of oxidative stress in the context of cellular damage, aging, and several age-related disorders. This review focuses on the molecular mechanisms and biological implications of protein carbonylation, and also presents current analytical approaches for determining and characterizing carbonylated proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10715762.2020.1851027DOI Listing

Publication Analysis

Top Keywords

protein carbonylation
8
molecular mechanisms
8
mechanisms biological
8
biological implications
8
analytical approaches
8
carbonylation molecular
4
implications analytical
4
proteins
4
approaches proteins
4
proteins oxidatively
4

Similar Publications

Beer and its components show potential for reducing hepatic steatosis in rodent models through multiple mechanisms. This study aimed to evaluate beer's anti-steatotic effects in a high-fat diet (HFD)-induced mouse model of Metabolic dysfunction-Associated Liver Disease (MASLD) and to explore the underlying mechanisms. In the HFD group, steatosis was confirmed by altered blood parameters, weight gain, elevated liver lipid content, and histological changes.

View Article and Find Full Text PDF

Vitamin D exhibits strong antioxidant properties. However, its effect on oxidative stress after strenuous endurance exercise remains unclear. Therefore, we investigated the effects of vitamin D supplementation on strenuous endurance-exercise-induced oxidative stress.

View Article and Find Full Text PDF

Combined effects of a pharmaceutical pollutant, gemfibrozil, and abiotic stressors (warming and air exposure) on cellular stress responses of the blue mussels Mytilus edulis.

Aquat Toxicol

January 2025

Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany. Electronic address:

Lipid-lowering drugs such as gemfibrozil (GFB) are widely used and highly biologically active, contributing to their persistence in wastewater and subsequent release into aquatic ecosystems. However, the potential impacts and toxic mechanisms of these emerging pollutants on non-target marine organisms, particularly keystone bivalves like Mytilus edulis, remain poorly understood. To address this knowledge gap, we investigated the effects of environmentally relevant concentrations of GFB (25 µg l) on oxidative, nitrosative, and dicarbonyl stress in M.

View Article and Find Full Text PDF

Stress response proteins within biofilm matrixome protect the cell membrane against heavy metals-induced oxidative damage in a marine bacterium Bacillus stercoris GST-03.

Int J Biol Macromol

December 2024

Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India. Electronic address:

Biofilm formation is a key adaptive response of marine bacteria towards stress conditions. The protective mechanisms of biofilm matrixome proteins against heavy metals (Pb and Cd) induced oxidative damage in the marine bacterium Bacillus stercoris GST-03 was investigated. Exposure to heavy metals resulted in significant changes in cell morphology, biofilm formation, and matrixome composition.

View Article and Find Full Text PDF

Exercise stress test-induced hypofibrinolysis and changes in circulating levels of several interleukins have been observed in aortic stenosis (AS). However, it is unknown whether the pattern of exercise-induced changes in oxidative stress differs between AS patients and controls and if the differences are associated with changes in fibrinolysis and inflammation. We studied 32 asymptomatic patients with moderate-to-severe AS and 32 controls of similar age, sex, and body mass index.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!