The promising potential of nano-structured lipid carrier (NLC) polymeric gel of CUR as an effective treatment for rheumatoid arthritis by intra-articular route of administration was investigated. NLC composed of cetylpalmitate, Labrafac PG & Captex 200, Tween 80 and Labrasol. The hot homogenization method employed by melt ultrasonication was used. The formulated NLC dispersions were characterized and were suitably dispersed into the matrix of pluronic F-127(PLF-127) and pluronic F-68 (PLF-68). A two-factor three-level full factorial design was employed to deduce the optimal concentrations of PLF-127 and PLF-68. The optimized formulations were sterilized by gamma radiation. The formulated NLC smart gels were characterized and evaluated for various parameters. The efficacy evaluation by antigen-induced monoarthritis model and biocompatibility testing by histopathological studies was performed. Formulated NLCs exhibited an average particle size of 165.12 nm, entrapment efficiency of 72.15%, and zeta potential of -21.67 mV. The optimized CUR-NLC smart gel was demonstrated to have a sol-gel transformation at 33.21 °C and 94.32% drug release at 84 h. NLC's which were sterile and easily syringeable, continued to remain within the colloidal range. CUR-NLC smart gels were found to be biocompatible and showed a significant reduction in rat knee joint inflammation compared to free drug.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08916934.2020.1846184DOI Listing

Publication Analysis

Top Keywords

smart gel
8
formulated nlc
8
smart gels
8
cur-nlc smart
8
nanostructured lipid
4
lipid carrier-based
4
smart
4
carrier-based smart
4
gel delivery
4
delivery platform
4

Similar Publications

Konjac glucomannan foams integrated with bilayer phase change microcapsules for efficient heat storage and thermal insulation.

Carbohydr Polym

March 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industry Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK. Electronic address:

The traditional foams can only block heat loss, and cannot effectively store and release heat energy on demand to extend the insulation time. In this work, the paraffin-rich monolayer microcapsules were prepared using negatively charged phosphorylated cellulose nanofibers (CNF) as the emulsifier of Pickering emulsion. The positive chitosan was assembled on the surface of the monolayer microcapsules through an electrostatic layer-by-layer self-assembly method to prepare the bilayer microcapsules.

View Article and Find Full Text PDF

ROS-differentiated release of Apelin-13 from hydrogel comprehensively treats myocardial ischemia-reperfusion injury.

J Control Release

January 2025

Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China. Electronic address:

Treatment of myocardial ischemia-reperfusion (MI/R) injury still faces the lack of clinically approved drugs. Apelin-13 is a highly promising drug candidate of MI/R injury, but hampered by its extremely short half-life in plasma. This calls for efficient and smart delivering system for Apelin-13 delivery, but has not been reported.

View Article and Find Full Text PDF

Electrochromic Fabric Device Based on Lamellar Polyaniline through Inkjet Printing.

Macromol Rapid Commun

January 2025

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Flexible electrochromic devices (FECD) have been widely applied in smart displays, wearable devices, and other fields, however, the synchronous improvement of electrochromic performance and flexibility is still a challenge. In this paper, a fabric-based FECD with "side-by-side" structure is designed and constructed through inkjet printing. The polyaniline nanosheets with good dispersion are used as ink and electrochromic material, and the self-developed semi-solid electrolyte based on polyvinyl alcohol serves as gel electrolyte.

View Article and Find Full Text PDF

3D printable and myoelectrically sensitive hydrogel for smart prosthetic hand control.

Microsyst Nanoeng

January 2025

Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China.

Surface electromyogram (sEMG) serves as a means to discern human movement intentions, achieved by applying epidermal electrodes to specific body regions. However, it is difficult to obtain high-fidelity sEMG recordings in areas with intricate curved surfaces, such as the body, because regular sEMG electrodes have stiff structures. In this study, we developed myoelectrically sensitive hydrogels via 3D printing and integrated them into a stretchable, flexible, and high-density sEMG electrodes array.

View Article and Find Full Text PDF

Corrigendum to "Facile degradation of chitosan-sodium alginate-chromium (III) gel in relation to leather re-tanning and filling" [International Journal of Biological Macromolecules, 240 (2023) 124437].

Int J Biol Macromol

January 2025

State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!