There are now nine inherited diseases that have been identified in the pathway of mitochondrial fatty acid oxidation, including LCAD, MCAD, SCAD, and HMG-CoA lyase deficiencies, two forms each of CPT and MAD deficiencies and an incompletely characterized disorder of primary carnitine deficiency. The varied range of clinical manifestations in this new group of diseases should attract the attention not only of general pediatricians (coma, hypoglycemia) but also of pediatric subspecialists in neurology (myopathy), cardiology (cardiomyopathy), and gastroenterology (fatty liver), as well as genetics and metabolism. The presenting features of the genetic defects in fatty acid oxidation fit well with the concept that fatty acid oxidation plays a major role in energy production during prolonged fasting and in working cardiac and skeletal muscle. Life-threatening episodes of coma and hypoglycemia induced by fasting are a common presenting feature in most of the fatty acid oxidation disorders (MCAD, LCAD, and HMG-CoA lyase deficiencies, the infantile form of CPT deficiency, the mild form of MAD deficiency, and in some cases of primary carnitine deficiency). The hypoglycemia in these disorders is most easily explained by the inability of affected patients to use fatty acids as a fuel as a substitute for glucose. It should be stressed, however, that the coma in these disorders may occur from direct toxic effects of fatty acids or fatty acid intermediates before plasma glucose concentrations reach hypoglycemic levels. Severe disturbances of muscle function are a feature in several of the disorders; hypertrophic cardiomyopathy and chronic skeletal muscle weakness occur in both the mild and severe forms of MAD deficiency, in primary carnitine deficiency, and in some patients with LCAD deficiency. In contrast, patients with the adult form of CPT deficiency have normal muscle strength but are prone to episodes of painful rhabdomyolysis induced by prolonged exercise. These manifestations presumably reflect the requirement of working cardiac and skeletal muscle for energy supplied from fatty acid oxidation. In two of the disorders, SCAD deficiency and the severe form of MAD deficiency, chronic CNS toxicity is a dominant feature. The severe effects on the brain in these two disorders may reflect the fact that short-chain fatty acids more readily cross the blood-brain barrier than longer-chain fatty acids.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source

Publication Analysis

Top Keywords

fatty acid
28
acid oxidation
24
carnitine deficiency
16
fatty
12
primary carnitine
12
skeletal muscle
12
mad deficiency
12
fatty acids
12
deficiency
11
genetic defects
8

Similar Publications

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Purpose: Patients with partial or complete DPD deficiency have decreased capacity to degrade fluorouracil and are at risk of developing toxicity, which can be even life-threatening.

Case: A 43-year-old man with moderately differentiated rectal adenocarcinoma on capecitabine presented to the emergency department with complaints of nausea, vomiting, diarrhea, weakness, and lower abdominal pain for several days. Laboratory findings include grade 4 neutropenia (ANC 10) and thrombocytopenia (platelets 36,000).

View Article and Find Full Text PDF

The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!