Pathway to Complete Energy Sector Decarbonization with Available Iridium Resources using Ultralow Loaded Water Electrolyzers.

ACS Appl Mater Interfaces

Energy Technologies Area, Energy Conversion Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Published: November 2020

We present ultralow Ir-loaded (ULL) proton exchange membrane water electrolyzer (PEMWE) cells that can produce enough hydrogen to largely decarbonize the global natural gas, transportation, and electrical storage sectors by 2050, using only half of the annual global Ir production for PEMWE deployment. This represents a significant improvement in PEMWE's global potential, enabled by careful control of the anode catalyst layer (CL), including its mesostructure and catalyst dispersion. Using commercially relevant membranes (Nafion 117), cell materials, electrocatalysts, and fabrication techniques, we achieve at peak a 250× improvement in Ir mass activity over commercial PEMWEs. An optimal Ir loading of 0.011 mg cm operated at an Ir-specific power of ∼100 MW kg at a cell potential of ∼1.66 V versus RHE (85% higher heating value efficiency). We further evaluate the performance limitations within the ULL regime and offer new insights and guidance in CL design relevant to the broader energy conversion field.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c15687DOI Listing

Publication Analysis

Top Keywords

pathway complete
4
complete energy
4
energy sector
4
sector decarbonization
4
decarbonization iridium
4
iridium resources
4
resources ultralow
4
ultralow loaded
4
loaded water
4
water electrolyzers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!