Multi-view architectures using lens arrays can bring interesting features like 3D or multispectral imagery over single aperture cameras. Combined with super-resolution algorithms, multi-view designs are a way to miniaturize cameras while maintaining their resolution. These optical designs can be adapted for thermal infrared imagery and can thus answer the size, weight and power (SWAP) challenge with advanced imagery functions. However, in this spectral range, the choice of an uncooled microbolometer detector imposes a high numerical aperture for the system which increases the size of the optics and makes difficult a multi-channel arrangement combined with a single focal plane array (FPA). In this paper, we theoretically investigate several asymmetric or decentered multi-view designs that allow both a high aperture for the optical channels and the use of a single FPA for the sub-images. Ray-traced designs will illustrate this study and their image quality will be checked with modulation transfer functions (MTF) for different field points.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.408442DOI Listing

Publication Analysis

Top Keywords

multi-view designs
12
asymmetric decentered
8
decentered multi-view
8
designs
5
study asymmetric
4
multi-view
4
designs uncooled
4
uncooled infrared
4
infrared imaging
4
imaging applications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!