We present a method of post-deposition tuning of the optical properties of thin film dielectric filters and mirrors containing chalcogenide glass (ChG) layers by thermally adjusting their refractive index. A common challenge associated with the use of ChG films in practical applications is that they suffer from slight run-to-run variations in optical properties resulting from hard-to-control changes in source material and deposition conditions. These variations lead to inconsistencies in optical constants, making the fabrication of devices with prescribed optical properties challenging. In this paper, we present new work that takes advantage of the large variation of a ChG films' refractive index as a function of annealing. We have carried out extensive characterization of the thermal index tuning and thickness change of arsenic selenide (AsSe) ChG thin films and observed refractive index changes larger than 0.1 in some cases. We show results for refractive index as a function of annealing time and temperature and propose a model to describe this behavior based on bond rearrangement. We apply thermal refractive index tuning to permanently shift the resonance of a Fabry-Perot filter and the cutoff wavelength of a Bragg reflector. The Bragg reflector, consisting of alternating AsSe and CaF layers, exhibits high reflectance across a ∼550 nm band with only five layers. Modeling results are compared with spectroscopic measurements, demonstrating good agreement.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.409531DOI Listing

Publication Analysis

Top Keywords

optical properties
12
thermal tuning
8
arsenic selenide
8
thin films
8
refractive function
8
function annealing
8
bragg reflector
8
refractive
5
tuning arsenic
4
selenide glass
4

Similar Publications

Realizing quantum control and entanglement of particles is crucial for advancing both quantum technologies and fundamental science. Substantial developments in this domain have been achieved in a variety of systems. In this context, ultracold polar molecules offer new and unique opportunities because of their more complex internal structure associated with vibration and rotation, coupled with the existence of long-range interactions.

View Article and Find Full Text PDF

Advancements in iron-based photocatalytic degradation for antibiotics and dyes.

J Environ Manage

January 2025

School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai, 201209, PR China.

The accelerated growth of the economy and advancements in medical technology have led to the discharge of a diverse range of organic pollutants into water sources. Recent investigations into water treatment have demonstrated the potential for integrating photocatalysis with techniques such as photocatalytic persulfate activation and the Photo-Fenton process for more efficient wastewater management. Iron-based photocatalysts responsive to visible light offer several advantages, including non-toxicity, safety, affordability, and excellent chemical and optical properties.

View Article and Find Full Text PDF

Ferroelectricity with concomitant Coulomb screening in van der Waals heterostructures.

Nat Nanotechnol

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.

Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.

View Article and Find Full Text PDF

Mechanistic insight into multiple effects of copper ion on the photoreactivity of dissolved organic matter.

J Hazard Mater

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu is a typical redox transient cation and has strong affinity to DOM.

View Article and Find Full Text PDF

Design, Synthesis, and Imaging of a Stable Xanthene-Based Dye with NIR-II Emission up to 1450 nm.

Anal Chem

January 2025

Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China.

The development of long-wavelength near-infrared II (NIR-II, 900-1700 nm) dyes is highly desirable but challenging. To achieve both red-shifted absorption/emission and superior imaging capabilities, a donor-acceptor-donor (D-A-D) xanthene core was strategically modified by extending π-conjugated double bonds and enhancing electron-donating properties. Two dyes named and were synthesized and exhibited notably red-shifted absorption/emission peaks at 942/1250 and 1098/1450 nm, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!