Fatty Acid Profile of Mature Red Blood Cell Membranes and Dietary Intake as a New Approach to Characterize Children with Overweight and Obesity.

Nutrients

AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain.

Published: November 2020

Obesity is a chronic metabolic disease of high complexity and of multifactorial origin. Understanding the effects of nutrition on childhood obesity metabolism remains a challenge. The aim of this study was to determine the fatty acid (FA) profile of red blood cell (RBC) membranes as a comprehensive biomarker of children's obesity metabolism, together with the evaluation of their dietary intake. An observational study was carried out on 209 children (107 healthy controls, 41 who were overweight and 61 with obesity) between 6 and 16 years of age. Mature RBC membrane phospholipids were analyzed for FA composition by gas chromatography-mass spectrometry (GC-MS). Dietary habits were evaluated using validated food frequency questionnaires (FFQ) and the Mediterranean Diet Quality Index for children (KIDMED) test. Compared to children with normal weight, children with obesity showed an inflammatory profile in mature RBC FAs, evidenced by higher levels of ω-6 polyunsaturated FAs (mainly arachidonic acid, < 0.001). Children who were overweight or obese presented lower levels of monounsaturated FA (MUFA) compared to children with normal weight ( = 0.001 and = 0.03, respectively), resulting in an increased saturated fatty acid (SFA)/MUFA ratio. A lower intake of nuts was observed for children with obesity. A comprehensive membrane lipidomic profile approach in children with obesity will contribute to a better understanding of the metabolic differences present in these individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696547PMC
http://dx.doi.org/10.3390/nu12113446DOI Listing

Publication Analysis

Top Keywords

fatty acid
12
children obesity
12
children
9
acid profile
8
profile mature
8
red blood
8
blood cell
8
dietary intake
8
children overweight
8
obesity
8

Similar Publications

Fungal trunk diseases are of major concern for tree fruit, nut, and grape growers throughout the world. These diseases include Eutypa dieback of grape, caused by , band canker of almond, caused by and , and twig and branch dieback of walnut, caused by , Botryosphaeria dieback of grape, caused by , and , and esca of grape, caused by and . Given the common occurrence of mixed infections, and the similar wood symptoms at the macroscopic level, species-specific detection tools are needed.

View Article and Find Full Text PDF

Mitochondrial fatty acid oxidation regulates monocytic type I interferon signaling via histone acetylation.

Sci Adv

January 2025

Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.

View Article and Find Full Text PDF

Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons.

View Article and Find Full Text PDF

sp. nov. isolated from flowers of winter savoury L.

Int J Syst Evol Microbiol

January 2025

Laboratorio de Bacterias Lcticas y Probiticos, Instituto de Agroqumica y Tecnologa de Alimentos (IATA-CSIC), Av. Agustn Escardino 7, 46980 Paterna, Spain.

A novel strain of the genus , named He02, was isolated from flowers of L. in a survey for lactic acid bacteria associated with wild and cultivated plants in the metropolitan area of Valencia, Spain. Partial 16S rRNA gene sequencing revealed a similarity of 99% to DSM 23037=Ryu1-2.

View Article and Find Full Text PDF

Purpose Of Review: The term metabolic dysfunction-associated steatotic liver disease (MASLD) refers to a group of progressive steatotic liver conditions that include metabolic dysfunction-associated steatohepatitis (MASH), which has varying degrees of liver fibrosis and may advance to cirrhosis, and independent hepatic steatosis. MASLD has a complex underlying mechanism, with patients exhibiting diverse causes and phases of the disease. India has a pool prevalence of MASLD of 38.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!