Continued downscaling of functional layers for key enabling devices has prompted the development of characterization tools to probe and dynamically control thin film formation stages and ensure the desired film morphology and functionalities in terms of, e.g., layer surface smoothness or electrical properties. In this work, we review the combined use of in situ and real-time optical (wafer curvature, spectroscopic ellipsometry) and electrical probes for gaining insights into the early growth stages of magnetron-sputter-deposited films. Data are reported for a large variety of metals characterized by different atomic mobilities and interface reactivities. For fcc noble-metal films (Ag, Cu, Pd) exhibiting a pronounced three-dimensional growth on weakly-interacting substrates (SiO, amorphous carbon (a-C)), wafer curvature, spectroscopic ellipsometry, and resistivity techniques are shown to be complementary in studying the morphological evolution of discontinuous layers, and determining the percolation threshold and the onset of continuous film formation. The influence of growth kinetics (in terms of intrinsic atomic mobility, substrate temperature, deposition rate, deposition flux temporal profile) and the effect of deposited energy (through changes in working pressure or bias voltage) on the various morphological transition thicknesses is critically examined. For bcc transition metals, like Fe and Mo deposited on a-Si, in situ and real-time growth monitoring data exhibit transient features at a critical layer thickness of ~2 nm, which is a fingerprint of an interface-mediated crystalline-to-amorphous phase transition, while such behavior is not observed for Ta films that crystallize into their metastable tetragonal β-Ta allotropic phase. The potential of optical and electrical diagnostic tools is also explored to reveal complex interfacial reactions and their effect on growth of Pd films on a-Si or a-Ge interlayers. For all case studies presented in the article, in situ data are complemented with and benchmarked against ex situ structural and morphological analyses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697846 | PMC |
http://dx.doi.org/10.3390/nano10112225 | DOI Listing |
Cell Tissue Res
January 2025
College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China.
Sox genes encode a family of transcription factors that regulate multiple biological processes during metazoan development, including embryogenesis, tissue homeostasis, nervous system specification, and stem cell maintenance. The planarian Dugesia japonica contains a reservoir of stem cells that grow and divide continuously to support cellular turnover. However, whether SOX proteins retain these conserved functions in planarians remains to be determined.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan. Electronic address:
In viviparous black rockfish (Sebastes schlegelii), the kidney of reproductive-phase males actively produces lipocalin-type prostaglandin D synthase homolog (LPGDSh) protein, which is presumably involved in intersexual communication when emitted in the urine. The present study was undertaken to discover whether androgens and their nuclear receptors (Ars) are engaged in regulation of renal LPGDSh protein synthesis in black rockfish. Quantitative real-time polymerase chain reaction, in conjunction with immunohistochemistry and highly sensitive enzyme-linked immunosorbent assay, revealed that intra-abdominal administration of a synthetic androgen, 17α-methyltestosterone (MT), to juvenile black rockfish induced their renal expression of LPGDSh transcript and protein.
View Article and Find Full Text PDFClin J Gastroenterol
January 2025
Division of Endoscopy, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-Cho, Sunto-Gun, Shizuoka, 411-8777, Japan.
Anal canal cancer (ACC) is a rare yet noteworthy malignancy that is strongly associated with high-risk human papillomaviruses (HPVs). This case report highlights the diagnostic utility of endocytoscopy (EC) in distinguishing high-grade squamous intraepithelial lesions (HSILs) from low-grade lesions (LSILs) in a 57-year-old male presenting with hematochezia. Traditional magnifying endoscopy was inconclusive; however, EC provided detailed visualization of cellular and vascular changes, facilitating a diagnosis of HPV-associated HSIL or carcinoma in situ.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China.
J Mater Chem B
January 2025
State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!