Phospholipidosis (PLD), the intracellular accumulation of phospholipids, is an adaptive response to toxic stimuli and serves as an important parameter in the biological assessment of compounds. Cationic amphiphilic drugs are the main inducers of PLD and may impair the function of alveolar macrophages. In vivo and in vitro models are used for PLD screening but the choice of the cellular model may be important because PLD develops in a cell- and species-specific manner. In this study, a panel of different staining (LysoSensor, Acridine Orange, Nile Red, HCS LipidTOX, LysoID) was evaluated in murine (DMBM-2, J774, RAW264.7) and human (THP-1, monocyte-derived macrophages from peripheral blood) cells to identify the most sensitive and easy to analyze staining method and to detect species-specific differences in the reaction pattern. Amiodarone and chloroquine served as inducers of PLD. High content screening was used to compare number, area, and intensity of the staining. Due to the fast staining protocol and the sensitivity of the detection, LysoID proved to be the most suitable dye of the testing. The lower induction of PLD by chloroquine reported in vivo was also seen in this study. THP-1 macrophages, followed by DMBM-2 cells, produced the most similar reaction pattern to human monocyte-derived macrophages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664898 | PMC |
http://dx.doi.org/10.3390/ijms21218391 | DOI Listing |
Neuroscience
January 2025
Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland. Electronic address:
Due to the increasing prevalence of depressive and anxiety disorders in youth, a growing interest in the endocannabinoid system (ECS) as a potential alternative target point for treatment arised. This study aimed to investigate whether chronic administration of escitalopram reverses behavioral changes induced by maternal separation in male adolescent Wistar rats and explore the corresponding neurochemical changes in the ECS. The pups were separated from their dams for 360 min daily from postnatal day (PND) 2 until PND 15.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Department of Physics, Indian Institute of Technology Delhi, DEPRTMENT OF PHYSICS, IIT DELHI, HAUZ KHAS, New Delhi, Delhi, 110016, INDIA.
Time-reversal symmetry breaking of a topological insulator phase generates zero-field edge modes which are the hallmark of the quantum anomalous Hall effect (QAHE) and of possible value for dissipation-free switching or non-reciprocal microwave devices. But present material systems exhibiting the QAHE, such as magnetically doped bismuth telluride and twisted bilayer graphene, are intrinsically unstable, limiting their scalability. A pristine magnetic oxide at the surface of a TI would leave the TI structure intact and stabilize the TI surface, but epitaxy of an oxide on the lower-melting-point chalcogenide presents a particular challenge.
View Article and Find Full Text PDFPhytomedicine
November 2024
Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
Background: Chinese yam polysaccharide (SYDT) has been reported to protect renal function and mitigate renal fibrosis in mice with diabetic nephropathy. Based on a multi-omics analysis, the objectives of this study were to determine the effect of SYDT on cisplatin (CDDP)-induced chronic renal interstitial fibrosis (RIF) and the underlying molecular mechanisms using an in vivo model.
Methods: Rats were intraperitoneally injected with a single dose of CDDP and then treated with SYDT or amifostine (AMF).
Proteoglycan Res
November 2024
Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy University of North Carolina Chapel Hill North Carolina USA.
Biochim Biophys Acta Mol Cell Biol Lipids
November 2024
Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil. Electronic address:
Members of the phospholipase D (PLD) superfamily found in Loxosceles spider venoms are potent toxins with inflammatory and necrotizing activities. They degrade phospholipids in cell membranes, generating bioactive molecules that activate skin cells. These skin cells, in turn, activate leukocytes involved in dermonecrosis, characterized by aseptic coagulative necrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!