Lab-on-a-chip technology is an emerging and convenient system to easily and quickly separate proteins of high molecular weight. The current study established a high-molecular-weight glutenin subunit (HMW-GS) identification system using Lab-on-a-chip for three, six, and three of the allelic variations at the , , and loci, respectively, which are commonly used in wheat breeding programs. The molecular weight of 1Ax1 and 1Ax2* encoded by locus were of 200 kDa and 192 kDa and positioned below 1Dx subunits. The HMW-GS encoded by locus were electrophoresed in the following order below 1Ax1 and 1Ax2*: 1Bx13 ≥ 1Bx7 = 1Bx7 > 1Bx17 > 1By16 > 1By8 = 1By18 > 1By9. 1Dx2 and Dx5 showed around 4-kDa difference in their molecular weights, with 1Dy10 and 1Dy12 having 11-kDa difference, and were clearly differentiated on Lab-on-a-chip. Additionally, some of the HMW-GS, including 1By8, 1By18, and 1Dy10, having different theoretical molecular weights showed similar electrophoretic mobility patterns on Lab-on-a-chip. The relative protein amount of 1Bx7 was two-fold higher than that of 1Bx7 or 1Dx5 and, therefore, translated a significant increase in the protein amount in 1Bx7. Similarly, the relative protein amounts of 8 & 10 and 10 & 18 were higher than each subunit taken alone. Therefore, this study suggests the established HMW-GS identification system using Lab-on-a-chip as a reliable approach for evaluating HMW-GS for wheat breeding programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695314 | PMC |
http://dx.doi.org/10.3390/plants9111517 | DOI Listing |
ERJ Open Res
January 2025
Copenhagen Academy for Medical Education and Simulation, Rigshospitalet, The Capital Region of Denmark, Copenhagen, Denmark.
Rationale: Flexible bronchoscopy is an operator-dependent procedure. An automatic bronchial identification system based on artificial intelligence (AI) could help bronchoscopists to perform more complete and structured procedures through automatic guidance.
Methods: 101 participants were included from six different continents at the European Respiratory Society annual conference in Milan, 9-13 September 2023.
Front Artif Intell
January 2025
RV University, Bengaluru, India.
Introduction: Cyber situational awareness is critical for detecting and mitigating cybersecurity threats in real-time. This study introduces a comprehensive methodology that integrates the Isolation Forest and autoencoder algorithms, Structured Threat Information Expression (STIX) implementation, and ontology development to enhance cybersecurity threat detection and intelligence. The Isolation Forest algorithm excels in anomaly detection in high-dimensional datasets, while autoencoders provide nonlinear detection capabilities and adaptive feature learning.
View Article and Find Full Text PDFEcol Evol
January 2025
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems Potsdam Germany.
Mountains with complex terrain and steep environmental gradients are biodiversity hotspots such as the eastern Tibetan Plateau (TP). However, it is generally assumed that mountain terrain plays a secondary role in plant species assembly on a millennial time-scale compared to climate change. Here, we investigate plant richness and community changes during the last 18,000 years at two sites: Lake Naleng and Lake Ximen on the eastern TP with similar elevation and climatic conditions but contrasting terrain.
View Article and Find Full Text PDFOncol Lett
March 2025
College of Pharmacy, Korea University, Sejong 30019, Republic of Korea.
Cancer stem cells (CSCs) contribute to the resistance of intractable prostate cancer, and dopamine receptor (DR)D2 antagonists exhibit anticancer activity against prostate cancer and CSCs. Human prostate cancer PC-3 cells were used to generate CSC-like cells, serving as a surrogate system to identify the specific DR subtype the inhibition of which significantly affects prostate-derived CSCs. Additionally, the present study aimed to determine the downstream signaling molecules of this DR subtype that exert more profound effects compared with other DR subtypes.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
Persistent infection with high-risk human papillomavirus (hrHPV) is a major cause of cervical cancer. The effectiveness of current HPV-DNA testing, which is crucial for early detection, is limited in several aspects, including low sensitivity, accuracy issues, and the inability to perform comprehensive hrHPV typing. To address these limitations, we introduce MTIOT (Multiple subTypes In One Time), a novel detection method that utilizes machine learning with a new multichannel integration scheme to enhance HPV-DNA analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!