Fer1L5 is a dysferlin and myoferlin related protein, which has been predicted to have a role in vesicle trafficking and muscle membrane fusion events. Mutations in dysferlin and otoferlin genes cause heredity diseases: muscular dystrophy and deafness in humans, respectively. Dysferlin is implicated in membrane repair. Myoferlin has a role in myogenesis. In this study, we investigated the role of the Fer1L5 protein during myoblast fusion and membrane repair. To study the functions of Fer1L5 we used confocal microscopy, biochemical fractionation, Western blot analysis and multiphoton laser wounding assay. By immunolabelling, Fer1L5 was detected in vesicular structures. By biochemical fractionation Fer1L5 was observed in low density vesicles. Our studies show that the membranes of Fer1L5 vesicles are non-resistant to non-ionic detergent. Partial co-staining of Fer1L5 with other two ferlin vesicles, respectively, was observed. Fer1L5 expression was highly detected at the fusion sites of two apposed C2C12 myoblast membranes and its expression level gradually increased at D2 and reached a maximum at day 4 before decreasing during further differentiation. Our studies showed that Fer1L5 has fusion defects during myoblast fusion and impaired membrane repair when the C2C12 cultures were incubated with inhibitory Fer1L5 antibodies. In C2C12 cells Fer1L5 vesicles are involved in two stages, the fusion of myoblasts and the formation of large myotubes. Fer1L5 also plays a role in membrane repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695329 | PMC |
http://dx.doi.org/10.3390/biology9110386 | DOI Listing |
Pediatr Pulmonol
January 2025
Department of Clinical Research, Faculty of Health sciences, University of Southern Denmark, Odense, Denmark.
Introduction: A main feature of CDH is lung hypoplasia and the related presentation of pulmonary hypertension and cardiac dysfunction. Multiple factors influence pulmonary status after CDH: degree of hypoplasia, ventilator-induced injury, altered growth and development of pulmonary structures, reduced diaphragm function and chest wall abnormalities. The evolution of pulmonary sequela in this population is still unclear.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, China.
Background: The challenge of achieving effective tendon-to-bone healing remains a significant concern in sports medicine, necessitating further exploration. Biomimetic electrospun nanomaterials present promising avenues for improving this critical healing process.
Purpose: To investigate the biological efficacy of a novel aligned-to-random PLGA/Col1-PLGA/nHA bilayer electrospun nanofiber membrane in facilitating tendon-to-bone healing.
Gut Microbes
December 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
IgA nephropathy (IgAN) is related to the balance of gut microbiota. However, it is unclear whether changes in the gut microbiota can cause IgAN or attenuate its progression. This study employed IgAN and human microbiota-associated (HMA)-IgAN models to investigate the impact of IgAN on gut microbiota alteration and the mechanisms by which gut microbiota might trigger IgAN.
View Article and Find Full Text PDFBiomacromolecules
January 2025
State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.
Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!