Per- and polyfluoroalkyl substances (PFAS) have become ubiquitous environmental contaminants found in many parts of the globe and in all environmental compartments. The phase out of legacy C8 PFAS has led to an increase in functionality of the carbon backbone chain to include ether linkages and branching points. With the increased production of functionalized PFAS, there remains a paucity of information regarding the occurrence of constitutional isomers in the environment. In this study, a series of novel PFAS constitutional isomers were detected by high resolution mass spectrometry and characterized by MS/MS in river water collected weekly over 40 weeks. Constitutional isomers of CHFOS (-1.8 ± 2.5 ppm) were detected for the first time in 83% of the samples analyzed and the MS/MS fragmentation patterns clearly indicated there were two coeluting isomers present. Two chromatographically resolved peaks with deprotonated molecular formula CHFOS (1.9 ± 2.7 and 2.2 ± 3.1 ppm) were detected in 85% of the samples measured. MS/MS fragmentation patterns and a standard provided by a fluorochemical manufacturer confirmed the two isomers. A series of novel chlorinated PFAS were detected (M-1: CHClFO 0.9 ± 2.7 ppm and CHClFO 2.1 ± 2.6 ppm) in 34% of the water samples analyzed. The exact structure is not confirmed. River sediment collected below the water sample location contained several of the compounds detected in the water column illustrating the connectivity between the environmental compartments. Results highlight the need for further studies on the occurrence of isomers and authentic standards to confirm structures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.128359DOI Listing

Publication Analysis

Top Keywords

constitutional isomers
12
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
environmental compartments
8
series novel
8
samples analyzed
8
ms/ms fragmentation
8
fragmentation patterns
8
isomers
7
water
5

Similar Publications

Three different two dimensional Cd(II)-based metal-organic frameworks (MOFs) have been synthesized by utilizing same N,N'-donor ligand and three different functionalized dicarboxylate linkers namely isophthalate, 5-nitroisophthalate and 5-hydroxyisophthalate for compound 1, 2 and 3 respectively. The compounds that are isoreticular bi-walled 2D frameworks, show dual fluorescence emission spectra for their π-π* and n-π* excitation. Compound 1 is consists of unsubstituted bridging isophthalate whereas 2 and 3 are made with bridging isophthalate that are substituted by electron withdrawing -NO2 group and electron donating -OH group respectively.

View Article and Find Full Text PDF

Manipulating Backbone Planarity of Ester Functionalized Conjugated Polymer Constitutional Isomer Derivatives Blended with Molecular Acceptors for Controlling Photovoltaic Properties.

Chem Mater

December 2024

School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

Exploring both electron donor and acceptor phase components in bulk heterojunction structures has contributed to the advancement of organic photovoltaics (OPV) realizing power conversion efficiencies reaching 20%. Being able to control backbone planarity of the donor polymer, while understanding its effects on the polymer conformation and photophysical properties, fosters the groundwork for further achievements in this realm. In this report, three isomeric PM7 derivatives are designed and synthesized where the benzodithiophene-4,8-dione structure is replaced by a quaterthiophene bridge carrying two ester moieties.

View Article and Find Full Text PDF

A new molecular switch is presented that combines both biradical and azobenzene motifs to perform visible light-induced constitutional and stereo-isomerisation within the same molecule. The insertion of isonitrile-functionalised azobenzenes into the four-membered biradical [˙P(μ-NTer)P˙] (1), yielding a phosphorus-centred cyclopentane-1,3-diyl (-4B and -5B), represents a straightforward method to generate the desired double switches (-4B and -5B) in excellent yields (>90%). The switching properties are demonstrated for the fluorinated species -5B and, interestingly, can occur either stepwise or simultaneously, depending on the order in which the sample is irradiated with red and/or green light.

View Article and Find Full Text PDF

Butafulvenes, together with pentafulvenes and [3]radialenes, form a series of constitutional benzene isomers in which aromaticity changes significantly and can be strongly substituent dependent. Butafulvene, as a member of this series, is frequently proposed to be antiaromatic. Based on butafulvenes Hopf, Zimmerman and coworkers first time described, derivatives thereof were synthesized and the effects of substituents on both the stability of the intermediate isobenzenes and on their optoelectronic and (anti)aromatic properties are discussed.

View Article and Find Full Text PDF

Forging 1,1'-Bicyclopropenyls by Synergistic Au/Ag Dual-Catalyzed Cyclopropenyl Cross-Coupling.

J Am Chem Soc

October 2024

Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.

1,1'-Bicyclopropenyl is a constitutional isomer of benzene comprising two coupled cyclopropene units with the endocyclic double bonds in conjugation. Due to the intrinsic high strain energy, it remains a long-standing challenge to prepare 1,1'-bicyclopropenyl derivatives, particularly multisubstituted, nonsymmetrical ones, in an efficient and modular manner. Herein a straightforward Au/Ag bimetallic-catalyzed cyclopropenyl cross-coupling has been developed, providing a robust and versatile strategy for the rapid assembly of symmetrical and unsymmetrical 1,1'-bicyclopropenyl derivatives from cyclopropenyl benziodoxoles (CpBXs) and terminal cyclopropenes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!