Reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress and mitochondrial dysfunction are known to affect the structural and functional damage in the neural system. Cadmium (Cd) is an environmental contaminant that is widely found in numerous environmental matrices and exhibits potential neurotoxic risk. However, it remains unclear how mitochondrial redox status induces, and whether Cd destabilizes, the ER-mitochondria crosstalk to have a toxic effect on the nervous system. Herein, in our present study, bioinformatics analysis revealed an important role of protein interaction and mitochondrial machinery in brain samples from Alzheimer's disease (AD) patients. Furthermore, we established a neurotoxicity model in vivo and in vitro induced by cadmium chloride (CdCl). We demonstrated that CdCl exposure disrupts the balance in mitochondrial redox represented by enhanced mitochondrial ROS (mitoROS) levels, which enhance mitofusin 2 (Mfn2) S-glutathionylation and interrupt the mitochondria-associated ER membranes (MAMs) for crosstalk between the ER and mitochondria to induce neuronal necroptosis. Mechanistically, it was shown that CdCl exposure significantly enhances the mitochondria-associated degradation (MAD) of Mfn2 via S-glutathionylation, which inhibits Mfn2 localization to the MAMs and subsequently leads to the formation of the RIPK1-RIPK3-p-MLKL complex (a key component of the necrosome) at MAMs, to promote neuronal necroptosis. Furthermore, the glutaredoxin 1 (Grx1) catalyzed and Mfn2 overexpression restored S-glu-Mfn2, MAMs perturbation, necrosome formation, and necroptosis in neurons induced by CdCl exposure in vitro. Moreover, the intervention with antioxidants to reduce mitochondrial redox, such as N-acetyl-l-cysteine (NAC) and mitochondria-targeted antioxidant Mito-TEMPO, reduced the S-glutathionylation of Mfn2 involved in the antagonism of CdCl-induced necroptosis and neurotoxicity in vivo and in vitro. Taken together, our results are the first time to demonstrate that S-glutathionylation of Mfn2 promotes neuronal necroptosis via disruption of ER-mitochondria crosstalk in CdCl-induced neurotoxicity, providing the novel mechanistic insight into how hazardous chemical-induced adverse effects in various organs and tissues could be interpreted by intraorganellar pathways under the control of MAMs components in neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.127878DOI Listing

Publication Analysis

Top Keywords

neuronal necroptosis
16
er-mitochondria crosstalk
12
mitochondrial redox
12
cdcl exposure
12
promotes neuronal
8
in vivo in vitro
8
mfn2 s-glutathionylation
8
s-glutathionylation mfn2
8
mitochondrial
7
necroptosis
6

Similar Publications

Therapeutic implications of necroptosis activation in Alzheimer´s disease.

Alzheimers Res Ther

December 2024

Laboratory of Neurodegenerative Diseases, Center for Biomedicine, Universidad Mayor, Temuco, Chile.

In recent years, a growing body of research has unveiled the involvement of the necroptosis pathway in the pathogenesis of Alzheimer's disease (AD). This evidence has shed light on the mechanisms underlying neuronal death in AD, positioning necroptosis at the forefront as a potential target for therapeutic intervention. This review provides an update on the current knowledge on this emerging, yet rapidly advancing topic, encompassing all published studies that present supporting proof of the role of the necroptosis pathway in the neurodegenerative processes of AD.

View Article and Find Full Text PDF

A20 negatively regulates necroptosis-induced microglia/macrophages polarization and mediates cerebral ischemic tolerance via inhibiting the ubiquitination of RIP3.

Cell Death Dis

December 2024

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Neuronal necroptosis appears to be suppressed by the deubiquitinating enzyme A20 and is capable to regulate the polarization of microglia/macrophages after cerebral ischemia. We have demonstrated that hypoxic preconditioning (HPC) can alleviate receptor interacting protein 3 (RIP3)-induced necroptosis in CA1 after transient global cerebral ischemia (tGCI). However, it is still unclear whether HPC serves to regulate the phenotypic polarization of microglia/macrophages after cerebral ischemia by mitigating neuronal necroptosis.

View Article and Find Full Text PDF

Unveiling Smyd-2's Role in Cytoplasmic Nrf-2 Sequestration and Ferroptosis Induction in Hippocampal Neurons After Cerebral Ischemia/Reperfusion.

Cells

November 2024

School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China.

SET and MYND Domain-Containing 2 (Smyd-2), a specific protein lysine methyltransferase (PKMT), influences both histones and non-histones. Its role in cerebral ischemia/reperfusion (CIR), particularly in ferroptosis-a regulated form of cell death driven by lipid peroxidation-remains poorly understood. This study identifies the expression of Smyd-2 in the brain and investigates its relationship with neuronal programmed cell death (PCD).

View Article and Find Full Text PDF

The disruption of the local microenvironment subsequent to spinal cord injury (SCI) leads to a substantial loss of neurons in the affected region, which is a major contributing factor to impaired motor function recovery in patients. Fibroblast growth factor 20 (FGF20) is a neurotrophic factor that plays a crucial role in neuronal development and homeostasis. In this study, the recombinant human FGF20 (rhFGF20) was found to mitigate the process of necroptosis in a mouse model of SCI, thereby reducing neural functional deficits and promoting SCI repair.

View Article and Find Full Text PDF

Expression of RIPK-1 and S-100B in traumatic brain injury- exploring a forensic cases series.

Int J Legal Med

December 2024

Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, 56126, Italy.

Traumatic Brain Injury (TBI) represents one of the leading causes of disability and death globally, with a significant impact on public health. We present 12 cases (age 5-80 years old) of death due to TBI with different post-traumatic interval (PTI). The expression of S-100B and RIPK-1 in pericontusional zones of TBI were studied in forensic cases to understand the vitality and timing of injuries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!