The objective of this study was to investigate the photocatalytic removal of PPCPs using poly(3,4-ethylenedioxythiophene) (PEDOT) polymer. PEDOT is a conducting polymer that exhibits excellent photocatalytic activity and was used in this study without any additives or metal co-catalysts. The PEDOT was synthesized using chemical oxidative polymerization and characterized further for composition and morphology. PEDOT, in the presence of UV irradiation, showed >99% degradation of one of the most widely prescribed antidiabetic drugs, metformin, within 60 min. The effect of varying concentration of PEDOT, pH, and light irradiance was studied to achieve maximum photocatalytic efficiency. Two major degradation products of metformin of m/z 116 and 126 were detected using triple quadrupole LC-MS/MS, while the degradation kinetics was found to be of pseudo-first-order. Results revealed that photogenerated electrons, holes, and radical species played a role in the PPCPs' degradation. When a mixture of seven PPCPs in the ultra-pure water matrix was tested, more than 99% removal was observed for most of the PPCPs within 60 min. The removal efficiency decreased in a real wastewater effluent due to the presence of dissolved organic matter; however, still, more than 50% removal was observed for majority of the studied PPCPs. The results of PEDOT reusability revealed that the reuse contributed to the drop in the conductivity and subsequent drop in the photocatalytic activity; however, a simple acid treatment was found to be effective to recoup its conductivity. PEDOT was successfully immobilized on an electrospun fiber mat to enhance its applicability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.142302 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!