Climate Change solutions include CO extraction from atmosphere and water with burial by living habitats in sediment/soil. Nowhere on the planet are blue carbon plants which carry out massive carbon extraction and permanent burial more intensely concentrated than in SE Asia. For the first time we make a national and total inventory of data to date for "blue carbon" buried from mangroves and seagrass and delineate the constraints. For an area across Southeast Asia of approximately 12,000,000 km, supporting mangrove forests (5,116,032 ha) and seagrass meadows (6,744,529 ha), we analyzed the region's current blue carbon stocks. This estimate was achieved by integrating the sum of estuarine in situ carbon stock measurements with the extent of mangroves and seagrass across each nation, then summed for the region. We found that mangroves ecosystems regionally supported the greater amount of organic carbon (3095.19Tg C in 1st meter) over that of seagrass (1683.97 Tg C in 1st meter), with corresponding stock densities ranging from 15 to 2205 Mg ha and 31.3 to 2450 Mg ha respectively, a likely underestimate for entire carbon including sediment depths. The largest carbon stocks are found within Indonesia, followed by the Philippines, Papua New Guinea, Myanmar, Malaysia, Thailand, Tropical China, Viet-Nam, and Cambodia. Compared to the blue carbon hotspot of tropical/subtropical Gulf of Mexico's total carbon stock (480.48 Tg Corg), Southeast Asia's greater mangrove-seagrass stock density appears a more intense Blue Carbon hotspot (4778.66 Tg Corg). All regional Southeast Asian nation states should assist in superior preservation and habitat restoration plus similar measures in the USA & Mexico for the Gulf of Mexico, as apparently these form two of the largest tropical carbon sinks within coastal waters. We hypothesize it is SE Asia's regionally unique oceanic-geologic conditions, placed squarely within the tropics, which are largely responsible for this blue carbon hotspot, that is, consistently high ambient light levels and year-long warm temperatures, together with consistently strong inflow of dissolved carbon dioxide and upwelling of nutrients across the shallow geological plates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2020.111168DOI Listing

Publication Analysis

Top Keywords

blue carbon
24
carbon
14
carbon stocks
12
carbon hotspot
12
southeast asia
8
mangroves seagrass
8
carbon stock
8
1st meter
8
blue
6
coastal estuarine
4

Similar Publications

A green methodology for the synthesis of carbon quantum dots (CQDs) from coffee husk without the use of any toxic solvents is proposed in this work. Sonochemical exfoliation of biochar, obtained from the thermal carbonization of coffee husk (from a certified coffee seeds) at low temperature in an air-restricted atmosphere, is described as an alternative procedure for the sustainable production of CQDs. The synthesized CQDs exhibited blue fluorescence with a strong maximum emission band at 410 nm when excited at a maximum absorption wavelength of 330 nm.

View Article and Find Full Text PDF

Metal tellurides, known for their superior electrical conductivity and excellent electrochemical properties, are promising candidates for supercapacitor applications. This study introduces a novel method involving a metal-organic framework hybrid to synthesize CoTe@CoFeTe double-shelled nanocubes. Initially, zeolitic imidazolate framework-67 (ZIF67) and CoFe Prussian blue analog (PBA) nanocubes are synthesized through an anion-exchange reaction with [Fe(CN)] ions.

View Article and Find Full Text PDF

Zero-Waste Polyanion and Prussian Blue Composites toward Practical Sodium-Ion Batteries.

Adv Mater

January 2025

Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China.

Closed-loop transformation of raw materials into high-value-added products is highly desired for the sustainable development of the society but is seldom achieved. Here, a low-cost, solvent-free and "zero-waste" mechanochemical protocol is reported for the large-scale preparation of cathode materials for sodium-ion batteries (SIBs). This process ensures full utilization of raw materials, effectively reduces water consumption, and simplifies the operating process.

View Article and Find Full Text PDF

Adsorption of phenol and methylene blue contaminants onto high-performance catalytic activated carbon from biomass residues.

Heliyon

January 2025

Graduate School of International Agricultural Technology, Department of Green Eco System, Engineering, Seoul National University, Pyeongchang, 25354, Gangwon-do, South Korea.

Organic contaminants from wastewater toxicity to the environment has increased during the last few decades and, therefore, there is an urgent need to decontaminate wastewater prior to disposal. This study aimed to create a high surface area catalytic activated carbon (AC) under same carbonization conditions for phenol and methylene blue (organic wastewater) decontamination. husk (MH), sesame husk (SH), and baobab husk (BH) were used to prepare activated carbon for the removal of methylene blue (MB) and phenol (Ph).

View Article and Find Full Text PDF

Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!