A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The otc gene of Streptococcus suis plays an important role in biofilm formation, adhesion, and virulence in a murine model. | LitMetric

The otc gene of Streptococcus suis plays an important role in biofilm formation, adhesion, and virulence in a murine model.

Vet Microbiol

College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, 471000, China. Electronic address:

Published: December 2020

Streptococcus suis (S. suis) is an emerging zoonotic pathogen that can cause meningitis, arthritis, pneumonia, and sepsis. It poses a serious threat to the swine industry and public health worldwide. Ornithine carbamoyltransferase (OTC) is involved in the arginine deiminase system. OTC, which is a widely distributed enzyme in microorganisms, mammals, and higher plants, catalyzes the conversion of ornithine to citrulline. The present study showed that the otc gene plays an important role in the pathogenesis of S. suis infections. The ability of an otc-deficient mutant (Δotc) to form a biofilm was significantly reduced compared to the wild-type (WT) strain, as determined by crystal violet staining. Confocal laser scanning microscopy and scanning electron microscopy observations showed that the weakening of biofilm formation by the Δotc strain is related to a decrease in the extracellular matrix. In addition, compared to the WT strain, the Δotc strain had a reduced capacity to adhere to human laryngeal epidermoid carcinoma (HEp-2) cells compared to the WT strain. A real-time PCR analysis showed that the expression of adhesion-related genes by the Δotc strain was also lower than that of the WT strain. The virulence of the Δotc strain was significantly lower than that of the WT strain in a murine infection model. In addition, a histological analysis showed that the pathogenicity of the Δotc strain was lower than that of the WT strain, causing only slight inflammatory lesions in lung, liver, spleen, and kidney tissues. No significant differences were observed between the complemented mutant (CΔotc) and WT strains with respect to biofilm formation, adhesion, gene expression, and virulence. The present study provided evidence that the otc gene plays a pivotal role in the regulation of S. suis adhesion and biofilm formation. It also suggested that the otc gene is indirectly involved in the pathogenesis of S. suis serotype 2 infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2020.108925DOI Listing

Publication Analysis

Top Keywords

Δotc strain
20
otc gene
16
biofilm formation
16
strain lower
12
lower strain
12
strain
11
streptococcus suis
8
plays role
8
formation adhesion
8
gene plays
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!