Bone and joint enhancement filtering: Application to proximal femur segmentation from uncalibrated computed tomography datasets.

Med Image Anal

McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Radiology, University of Calgary, Calgary, Canada. Electronic address:

Published: January 2021

Methods for reliable femur segmentation enable the execution of quality retrospective studies and building of robust screening tools for bone and joint disease. An enhance-and-segment pipeline is proposed for proximal femur segmentation from computed tomography datasets. The filter is based on a scale-space model of cortical bone with properties including edge localization, invariance to density calibration, rotation invariance, and stability to noise. The filter is integrated with a graph cut segmentation technique guided through user provided sparse labels for rapid segmentation. Analysis is performed on 20 independent femurs. Rater proximal femur segmentation agreement was 0.21 mm (average surface distance), 0.98 (Dice similarity coefficient), and 2.34 mm (Hausdorff distance). Manual segmentation added considerable variability to measured failure load and volume (CV > 5%) but not density. The proposed algorithm considerably improved inter-rater reproducibility for all three outcomes (CV < 0.5%). The algorithm localized the periosteal surface accurately compared to manual segmentation but with a slight bias towards a smaller volume. Hessian-based filtering and graph cut segmentation localizes the periosteal surface of the proximal femur with comparable accuracy and improved precision compared to manual segmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2020.101887DOI Listing

Publication Analysis

Top Keywords

femur segmentation
16
proximal femur
12
bone joint
8
computed tomography
8
tomography datasets
8
segmentation
7
joint enhancement
4
enhancement filtering
4
filtering application
4
application proximal
4

Similar Publications

How do lesions affect limb lengthening in children with Ollier's disease?

BMC Musculoskelet Disord

January 2025

Department of Pediatric Orthopaedics, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Rd, Minhang District, Shanghai, 201102, China.

Purpose: Ollier's disease (multiple enchondromatosis) can cause severe lower limb length discrepancy and deformity in children. Osteotomy and limb lengthening with external fixation can correct the lower extremity deformity. There may be lesions in the osteotomy part (OP), and the internal fixation part of the external fixation(FP).

View Article and Find Full Text PDF

Functional Outcome of Subtrochanteric Femoral Fractures Fixation by Proximal Femoral Locking Compression Plate.

Mymensingh Med J

January 2025

Dr Md Sonaullah, Assistant Professor, Department of Orthopedics and Traumatology, Mymensingh Medical College (MMC), Mymensingh, Bangladesh; E-mail:

Subtrochanteric femoral fractures are one of the common fractures encountered in today's Orthopaedic practice. This area consists of mostly cortical bone with high stress generation thus heal slowly which leads implant failure. The inherent instability of this fracture and forces of the muscles with comminuted medial calcar is giving the fracture a tendency to varus collapse.

View Article and Find Full Text PDF

Induced membrane technique (IMT) is a new method for repairing segmental bone defects. However, the mechanism of its defect repair is not clear. In recent years, several studies have gradually indicated that ferroptosis is closely related to bone remodeling.

View Article and Find Full Text PDF

This study proposes a method for assessing the transverse toughness of human long-bone cortical tissue. The method is based on a three-point bending test of pre-notched femur diaphysis segments, post-processed using the compliance method coupled with numerical simulations. Given the cracking nature of bone and if cracking processes remain confined to the crack tip, it is assumed that the compliance method can be used.

View Article and Find Full Text PDF

Exploring developmental changes in femoral midneck cross-sectional properties.

Anat Rec (Hoboken)

December 2024

Laboratorio de Evolución Humana, Universidad de Burgos, Edificio I+D+i/CIBA, Burgos, Spain.

This research delves deeper into previous works on femoral cross-sectional properties during ontogeny by focusing for the first time on the human femoral midneck. The ontogenetic pattern of cross-sectional properties at femoral midneck is established and compared with those at three different femoral locations: the proximal femur, the midshaft, and the distal femur. The study sample includes 99 femora (70 non-adults and 29 adults) belonging to archaeological specimens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!