Biomineralization at fluid interfaces.

Adv Colloid Interface Sci

Departamento de Química Física, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain. Electronic address:

Published: December 2020

Biomineralization is of paramount importance for life on Earth. The delicate balance of physicochemical interactions at the interface between organic and inorganic matter during all stages of biomineralization resembles an extremely high complexity. The coordination of this sophisticated biological machinery and physicochemical scenarios is certainly a wonderful show of nature. Understanding of the biomineralization processes is still far from complete. The recent advances in biomineralization research from the Colloid and Interface Science perspective are reviewed herein. The synergy between this two fields of research is demonstrated. The unique opportunities offered by purposefully designed fluid interfaces, mainly Langmuir monolayers are presented. Biomedical applications of biomineral-based nanostructures are discussed, showing their improved biocompatibility and on-demand delivery features. A brief guide to the array of state-of-the-art experimental techniques for unraveling the mechanisms of biomineralization using fluid interfaces is included. In summary, the fruitful and exciting crossroad between Colloid and Interface Science with Biomineralization is exhibited.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2020.102313DOI Listing

Publication Analysis

Top Keywords

fluid interfaces
12
biomineralization fluid
8
colloid interface
8
interface science
8
biomineralization
7
interfaces biomineralization
4
biomineralization paramount
4
paramount life
4
life earth
4
earth delicate
4

Similar Publications

Solvent-Free Artificial Light-Harvesting System in a Fluid Donor with Highly Efficient Förster Resonance Energy Transfer.

J Phys Chem Lett

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

Multi-step Förster resonance energy transfer (FRET) plays a vital role in photosynthesis. While the energy transfer efficiency (Φ) of a naturally occurring system can reach 95%, that of most artificial light-harvesting systems (ALHSs) is still limited. Herein, we propose a strategy to construct highly efficient ALHSs using a blue-emitting, supercooled ionic compound of naphthalimide (NPI) as the donor, a green-emitting BODIPY derivate as a relay acceptor, and a commercially available, red-emitting dye [rhodamine B (RhB)] as the final acceptor.

View Article and Find Full Text PDF

Context: The flow equations are derived for describing the two-dimensional hybrid molecular-scale and continuum flows in the very small surface separation with inhomogeneous solid surfaces and they can be applied for designing the specific bearings. The aim of the present study is to solve this specific flow problem in engineering with normal computational cost. The flow factor approach model describes the flow of the molecule layer adjacent to the solid surface and the Newtonian fluid model describes the flow of the intermediate continuum fluid.

View Article and Find Full Text PDF

Awakening n-π* electron transition in structurally distorted g-CN nanosheets via hexamethylenetetramine-involved supercritical CO treatment towards efficient photocatalytic H production.

J Colloid Interface Sci

January 2025

International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an 710049 PR China.

Graphitic carbon nitride (g-CN) has been regarded as highly potential photocatalyst for solar energy utilization. However, the restricted absorption of visible light for pristine g-CN significantly limits the solar-light-driven chemical reaction efficiency. Herein, structurally distorted g-CN nanosheets with awakened n-π* electron transition were successfully synthesized through hexamethylenetetramine (HMTA)-involved supercritical CO (scCO) treatment and following pyrolysis of melamine precursor.

View Article and Find Full Text PDF

Purpose: Paraneoplastic syndromes (PNS) are a group of rare disorders triggered by an immune response to malignancy, characterized by diverse neurological, muscular, and systemic symptoms. This study aims to leverage machine learning to develop a predictive model for cancer diagnosis in patients with paraneoplastic autoantibodies.

Methods: Demographic data included age and sex, and presenting symptoms were recorded.

View Article and Find Full Text PDF

Modification of Liposomal Properties by an Engineered Gemini Surfactant.

Langmuir

January 2025

Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States.

Lipid membranes form the primary structure of cell membranes and serve as configurable interfaces across numerous applications including biosensing technologies, antifungal treatments, and therapeutic platforms. Therefore, the modification of lipid membranes by additives has important consequences in both biological processes and practical applications. In this study, we investigated a nicotinic-acid-based gemini surfactant (NAGS) as a chemically tunable molecular additive for modulating the structure and phase behavior of liposomal membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!