Magnetic skyrmions are complex swirling spin structures that are of interest for applications in energy-efficient memories and logic technologies. Multilayers of heavy metals and ferromagnets have been shown to host magnetic skyrmions at room temperature. Lorentz transmission electron microscopy is often used to study magnetic domain structures in multilayer samples using mainly Fresnel defocus imaging. Here, off-axis electron holography is used to obtain in-focus electron optical phase images of Néel-type domains and skyrmions in an Ir/Fe/Co/Pt multilayer sample. The preparation of the sample, reconstruction of the holograms and influence of sample tilt angle on the signal-to-noise ratio in the phase images are discussed. A good agreement is found between images of individual skyrmions that are stabilized using an external magnetic field and simulated images based on theoretical models of Néel-type skyrmions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2020.113155DOI Listing

Publication Analysis

Top Keywords

off-axis electron
8
electron holography
8
néel-type skyrmions
8
multilayers heavy
8
heavy metals
8
metals ferromagnets
8
magnetic skyrmions
8
phase images
8
skyrmions
6
holography néel-type
4

Similar Publications

Article Synopsis
  • Interfaces in heterostructures significantly affect the operation of electronic devices, impacting elements like capacitors and transistors used for memory and logic applications.
  • The study uses operando off-axis electron holography to measure trapped charges at dielectric and metal/dielectric interfaces in HfO- and AlO-based nanocapacitors under applied electric fields.
  • The findings reveal a high density of trapped charges at these interfaces that influences the device's electric field distribution, establishing a linear relationship between trapped charges and the applied bias for the first time.
View Article and Find Full Text PDF

There is a strong demand for efficient second harmonic generation (SHG) in ultra-intense short-pulse lasers. This paper demonstrates the generation of an unconverted fundamental (1ω)+second harmonics (2ω) mixed laser on the LFEX laser system. The experimental setup utilizes 0.

View Article and Find Full Text PDF

The perturbation of the reference wave due to electric stray fields represents a major challenge in quantitative electron holographic investigations. By introducing a focused-ion-beam-milled rectangular hole, the reference window, in an area of nearly constant electrostatic potential of the sample, this perturbation can be significantly reduced. The edge of the window forms a closed conducting loop, acting similarly to a Faraday cage, shielding the influence of the stray field on the reference wave to some extent.

View Article and Find Full Text PDF

Biomimetic Multi-Interface Design of Raspberry-like Absorbent: Gd-doped FeNi@Covalent Organic Framework Derivatives for Efficient Electromagnetic Attenuation.

Small Methods

October 2024

Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China.

Structural design and interface regulation are useful strategies for achieving strong electromagnetic wave absorption (EMWA) and broad effective absorption bandwidth (EAB). Herein, a monomer-mediated strategy is employed to control the growth of covalent organic framework (COF) wrapping flower-shaped Gd-doped FeNi (GFN), and a novel raspberry-like absorbent based on biomimetic design is fabricated by thermal catalysis. Further, a unique dielectric-magnetic synergistic system is constructed by utilizing the COF-derived nitrogen-doped porous carbon (NPC) as the shell and anisotropic GFN as the core.

View Article and Find Full Text PDF

Delineation of the impact on temporal behaviors of off-axis photoemission in an ultrafast electron microscope.

Rev Sci Instrum

September 2024

Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA.

Efforts to push the spatiotemporal imaging-resolution limits of femtosecond laser-driven ultrafast electron microscopes (UEMs) to the combined angstrom-fs range will benefit from stable sources capable of generating high bunch charges. Recent demonstrations of unconventional off-axis photoemitting geometries are promising, but connections to the observed onset of structural dynamics are yet to be established. Here we use the in-situ photoexcitation of coherent phonons to quantify the relative time-of-flight (r-TOF) of photoelectron packets generated from the Ni Wehnelt aperture and from a Ta cathode set-back from the aperture plane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!