Epilepsy is a network disorder driven by fundamental changes in the function of the cells which compose these networks. Driving this aberrant cellular function are large scale changes in gene expression and gene expression regulation. Recent studies have revealed rapid and persistent changes in epigenetic control of gene expression as a critical regulator of the epileptic transcriptome. Epigenetic-mediated gene output regulates many aspects of cellular physiology including neuronal structure, neurotransmitter assembly and abundance, protein abundance of ion channels and other critical neuronal processes. Thus, understanding the contribution of epigenetic-mediated gene regulation could illuminate novel regulatory mechanisms which may form the basis of novel therapeutic approaches to treat epilepsy. In this review we discuss the effects of epileptogenic brain insults on epigenetic regulation of gene expression, recent efforts to target epigenetic processes to block epileptogenesis and the prospects of an epigenetic-based therapy for epilepsy, and finally we discuss technological advancements which have facilitated the interrogation of the epigenome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2020.105179 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!