Aims: Autophagy has been reported to play an essential role in fibrotic disorders. Known as fibrotic cataract, posterior capsular opacification (PCO) result from pathological epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). This study aims to identify the role and potential mechanism of autophagy in TGF-β2-induced EMT in LECs.

Main Methods: Primary rabbit LECs were treated with TGF-β2 to induce EMT as a model of fibrotic cataract in vitro. 3-methyladenine, chloroquine, bafilomycin A1, and gene silencing of autophagy-related protein 7 (ATG7) were treated in LECs for autophagy inhibition, while rapamycin was utilized for autophagy activation. The expression levels of EMT/autophagy-associated markers were analyzed by qRT-PCR, western blotting, immunofluorescence and transmission electron microscopy. We additionally examined cell migration ability with transwell migration assay and wound healing assay.

Key Findings: TGF-β2 promoted autophagy flux during EMT progression of LECs in a time-dependent manner. Autophagy activation by rapamycin enhanced TGF-β2-triggered fibrogenic responses and cell migration in LECs, whereas pharmacological inhibition of autophagy alleviated TGF-β2-induced increases of EMT markers and cell migration of LECs. In addition, the phosphorylation of Smad2/3 induced by TGF-β2 was suppressed through autophagy inhibition, while it was promoted upon autophagy activation, indicating that TGF-β2/Smad signaling was involved in the modulation of autophagy on EMT in LECs. Furthermore, ATG7-silenced LECs exerted anti-fibrosis effect induced by TGF-β2 through downregulation of autophagy.

Significance: Intervention/inhibition of autophagy could attenuate TGF-β2-induced EMT in LECs, which provides autophagy-related insights on preventing and treating the fibrotic cataract or other fibrotic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.118741DOI Listing

Publication Analysis

Top Keywords

autophagy
12
autophagy inhibition
12
fibrotic cataract
12
autophagy activation
12
cell migration
12
lecs
9
epithelial-mesenchymal transition
8
lens epithelial
8
epithelial cells
8
tgf-β2-induced emt
8

Similar Publications

Targeting p38γ synergistically enhances sorafenib-induced cytotoxicity in hepatocellular carcinoma.

Cell Biol Toxicol

January 2025

Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China.

Sorafenib (Sora) is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC). It can significantly improve the survival rate of patients with advanced HCC, but it is prone to drug resistance during treatment, so the therapeutic effect is extremely limited. Here, we demonstrate that an elevated expression of protein kinase p38γ in hepatocellular carcinoma cells diminishes the tumor cells' sensitivity to Sora.

View Article and Find Full Text PDF

Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.

View Article and Find Full Text PDF

KAT2B inhibits proliferation and invasion via inactivating TGF-β/Smad3 pathway-medicated autophagy and EMT in epithelial ovarian cancer.

Sci Rep

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.

Lysine acetyltransferase 2B (KAT2B) plays a crucial role in epigenetic regulation and tumor pathogenesis. Our study investigates KAT2B's function in epithelial ovarian cancer (EOC) using in vivo and in vitro methods. Immunohistochemistry showed the KAT2B expression in EOC tissues.

View Article and Find Full Text PDF

Correction: NF-κB1 p50 stabilizes HIF-1α protein through suppression of ATG7-dependent autophagy.

Cell Death Dis

January 2025

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!