Aims: Autophagy has been reported to play an essential role in fibrotic disorders. Known as fibrotic cataract, posterior capsular opacification (PCO) result from pathological epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). This study aims to identify the role and potential mechanism of autophagy in TGF-β2-induced EMT in LECs.

Main Methods: Primary rabbit LECs were treated with TGF-β2 to induce EMT as a model of fibrotic cataract in vitro. 3-methyladenine, chloroquine, bafilomycin A1, and gene silencing of autophagy-related protein 7 (ATG7) were treated in LECs for autophagy inhibition, while rapamycin was utilized for autophagy activation. The expression levels of EMT/autophagy-associated markers were analyzed by qRT-PCR, western blotting, immunofluorescence and transmission electron microscopy. We additionally examined cell migration ability with transwell migration assay and wound healing assay.

Key Findings: TGF-β2 promoted autophagy flux during EMT progression of LECs in a time-dependent manner. Autophagy activation by rapamycin enhanced TGF-β2-triggered fibrogenic responses and cell migration in LECs, whereas pharmacological inhibition of autophagy alleviated TGF-β2-induced increases of EMT markers and cell migration of LECs. In addition, the phosphorylation of Smad2/3 induced by TGF-β2 was suppressed through autophagy inhibition, while it was promoted upon autophagy activation, indicating that TGF-β2/Smad signaling was involved in the modulation of autophagy on EMT in LECs. Furthermore, ATG7-silenced LECs exerted anti-fibrosis effect induced by TGF-β2 through downregulation of autophagy.

Significance: Intervention/inhibition of autophagy could attenuate TGF-β2-induced EMT in LECs, which provides autophagy-related insights on preventing and treating the fibrotic cataract or other fibrotic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.118741DOI Listing

Publication Analysis

Top Keywords

autophagy
12
autophagy inhibition
12
fibrotic cataract
12
autophagy activation
12
cell migration
12
lecs
9
epithelial-mesenchymal transition
8
lens epithelial
8
epithelial cells
8
tgf-β2-induced emt
8

Similar Publications

Purpose: Identifying therapeutic targets for Signet Ring Cell Carcinoma (SRCC) of the colon and rectum is a clinical challenge due to the lack of Patient-Derived Organoids (PDO) or Xenografts (PDX). We present a robust method to establish PDO and PDX models to answer address this unmet need. We demonstrate that these models identify novel therapeutic strategies targeting therapy resistance and peritoneal metastasis.

View Article and Find Full Text PDF

Parasitoid wasp venoms degrade imaginal discs for successful parasitism.

Sci Adv

January 2025

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan.

Article Synopsis
  • Parasitoid wasps, a highly diverse group of animals, use their venoms to manipulate the physiology of host larvae for their benefit.
  • Researchers discovered that a specific wasp can cause the death and dysfunction of its host's tissue precursors, a process called imaginal disc degradation (IDD).
  • The study identified two venom proteins crucial for IDD, showing how the wasp's venom strategically ensures the host grows but inhibits its transformation into adulthood.
View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.

Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.

View Article and Find Full Text PDF

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

O: BJECTIVES: Circular RNAs (circRNAs) are known to be associated with the progression of gestational diabetes mellitus (GDM). Thus, the objective of this study was to unveil the influnce and potential mechanism of hsa_circ_0002768 in GDM. M: ATERIAL AND: METHODS: Levels of hsa_circ_0002768 were quantified by RT-qPCR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!