Substance use disorders for cocaine are major public health concerns with few effective treatment options. Therefore, identification of novel pharmacotherapeutic targets is critical for future therapeutic development. Evolution has ensured that genes are expressed largely only where they are needed. Therefore, examining the gene expression landscape of the nucleus accumbens shell (NAcSh), a brain region important for reward related behaviors, may lead to the identification of novel targets for cocaine use disorder. In this study, we conducted a novel two-step topographic transcriptomic analysis using five seed transcripts with enhanced expression in the NAcSh to identify transcripts with similarly enhanced expression utilizing the correlation feature to search the more than 20,000 in situ hybridization experiments of the Allen Mouse Brain Atlas. Transcripts that correlated with at least three seed transcripts were analyzed with Ingenuity Pathway Analysis (IPA). We identified 7-fold more NAcSh-enhanced transcripts than our previous analysis using single voxels in the NAcSh as the seed. Analysis of the resulting transcripts with IPA identified many previously identified signaling pathways such as retinoic acid signaling as well as novel pathways. Manipulation of the retinoic acid pathway specifically in the NAcSh of male rats via viral vector-mediated RNA interference targeting fatty acid binding protein 5 (FABP5) decreased cocaine self-administration and modulates excitability of medium spiny neurons in the NAcSh. These results not only validate the prospective strategy of conducting a topographic transcriptomic analysis, but also further validate retinoic acid signaling as a promising pathway for pharmacotherapeutic development against cocaine use disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755097 | PMC |
http://dx.doi.org/10.1016/j.neuropharm.2020.108398 | DOI Listing |
Brief Bioinform
November 2024
Department of Biology, École Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
Acute Promyelocytic Leukaemia (APL) arises from an aberrant chromosomal translocation involving the Retinoic Acid Receptor Alpha (RARA) gene, predominantly with the Promyelocytic Leukaemia (PML) or Promyelocytic Leukaemia Zinc Finger (PLZF) genes. The resulting oncoproteins block the haematopoietic differentiation program promoting aberrant proliferative promyelocytes. Retinoic Acid (RA) therapy is successful in most of the PML::RARA patients, while PLZF::RARA patients frequently become resistant and relapse.
View Article and Find Full Text PDFJ Appl Toxicol
January 2025
Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
Cadmium (Cd) is a widely available metal that has been found to have a role in causing nonalcoholic fatty liver disease (NAFLD). However, the detailed toxicological targets and mechanisms by which Cd causes NAFLD are unknown. Therefore, the present work aims to reveal the main targets of action, cellular processes, and molecular pathways by which cadmium causes NAFLD.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Acute myeloid leukemia (AML) featuring retinoic acid receptor-gamma (RARG) rearrangements exhibits morphological features resembling those of acute promyelocytic leukemia but is associated with drug resistance and poor clinical outcomes. However, the mechanisms underlying the role of RARG fusions in leukemogenesis remain elusive. Here, we show that RARG fusions disrupt myeloid differentiation and promote proliferation and self-renewal of hematopoietic stem and progenitor cells (HSPCs) by upregulating BCL2 and ATF3.
View Article and Find Full Text PDFNat Commun
January 2025
National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
Acute myeloid leukemia (AML) with retinoic acid receptor gamma (RARG) fusions, which exhibits clinical features resembling acute promyelocytic leukemia (APL), has been identified as a new subtype with poor clinical outcomes. The underlying mechanism of RARG-fusion leukemia remains poorly understood, and needs to be explored urgently to instruct developing effective therapeutic strategies. Here, using the most prevalent RARG fusion, CPSF6-RARG (CR), as a representative, we reveal that the CR fusion, enhances the expansion of myeloid progenitors, impairs their maturation and synergizes with RAS mutations to drive more aggressive myeloid malignancies.
View Article and Find Full Text PDFDevelopment
January 2025
The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK.
Tissue development relies on the coordinated differentiation of stem cells in dynamically changing environments. The formation of the vertebrate neural tube from stem cells in the caudal lateral epiblast (CLE) is a well characterized example. Despite an understanding of the signalling pathways involved, the gene regulatory mechanisms remain poorly defined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!