Metabolic-Pathway-Based Subtyping of Triple-Negative Breast Cancer Reveals Potential Therapeutic Targets.

Cell Metab

Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China; Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China. Electronic address:

Published: January 2021

Triple-negative breast cancer (TNBC) remains an unmet medical challenge. We investigated metabolic dysregulation in TNBCs by using our multi-omics database (n = 465, the largest to date). TNBC samples were classified into three heterogeneous metabolic-pathway-based subtypes (MPSs) with distinct metabolic features: MPS1, the lipogenic subtype with upregulated lipid metabolism; MPS2, the glycolytic subtype with upregulated carbohydrate and nucleotide metabolism; and MPS3, the mixed subtype with partial pathway dysregulation. These subtypes were validated by metabolomic profiling of 72 samples. These three subtypes had distinct prognoses, molecular subtype distributions, and genomic alterations. Moreover, MPS1 TNBCs were more sensitive to metabolic inhibitors targeting fatty acid synthesis, whereas MPS2 TNBCs showed higher sensitivity to inhibitors targeting glycolysis. Importantly, inhibition of lactate dehydrogenase could enhance tumor response to anti-PD-1 immunotherapy in MPS2 TNBCs. Collectively, our analysis demonstrated the metabolic heterogeneity of TNBCs and enabled the development of personalized therapies targeting unique tumor metabolic profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2020.10.012DOI Listing

Publication Analysis

Top Keywords

triple-negative breast
8
breast cancer
8
subtype upregulated
8
inhibitors targeting
8
mps2 tnbcs
8
metabolic
5
tnbcs
5
metabolic-pathway-based subtyping
4
subtyping triple-negative
4
cancer reveals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!