The COVID-19 has emerged as an epidemic, causing severe pneumonia with a high infection rate globally. To better understand the pathogenesis caused by SARS-CoV-2, we developed a rhesus macaque model to mimic natural infection via the nasal route, resulting in the SARS-CoV-2 virus shedding in the nose and stool up to 27 days. Importantly, we observed the pathological progression of marked interstitial pneumonia in the infected animals on 5-7 dpi, with virus dissemination widely occurring in the lower respiratory tract and lymph nodes, and viral RNA was consistently detected from 5 to 21 dpi. During the infection period, the kinetics response of T cells was revealed to contribute to COVID-19 progression. Our findings implied that the antiviral response of T cells was suppressed after 3 days post infection, which might be related to increases in the Treg cell population in PBMCs. Moreover, two waves of the enhanced production of cytokines (TGF-α, IL-4, IL-6, GM-CSF, IL-10, IL-15, IL-1β), chemokines (MCP-1/CCL2, IL-8/CXCL8, and MIP-1β/CCL4) were detected in lung tissue. Our data collected from this model suggested that T cell response and cytokine/chemokine changes in lung should be considered as evaluation parameters for COVID-19 treatment and vaccine development, besides of observation of virus shedding and pathological analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660522 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1008949 | DOI Listing |
Nat Commun
December 2024
Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
Rabies is a viral zoonosis that kills thousands of people annually in low- and middle-income countries across Africa and Asia where domestic dogs are the reservoir. 'Zero by 30', the global strategy to end dog-mediated human rabies, promotes a One Health approach underpinned by mass dog vaccination, post-exposure vaccination of bite victims, robust surveillance and community engagement. Using Integrated Bite Case Management (IBCM) and whole genome sequencing (WGS), we enhanced rabies surveillance to detect an outbreak in a formerly rabies-free island province in the Philippines.
View Article and Find Full Text PDFBMC Public Health
December 2024
Department of Hospital Group Office, Shenzhen Luohu Hospital Group Luohu People's Hospital, Shenzhen, 518001, China.
Background: The Chinese government has introduced a series of hierarchical medical policies to ensure continuity of care, but referrals remain difficult to implement effectively. This study aimed to evaluate the chronic disease referral network and explore the problems associated with the specific implementation of referrals.
Methods: This study was a repeated cross-sectional study of monthly data collected between August 2017 and December 2023 in Luohu district, Shenzhen, China.
Ther Adv Musculoskelet Dis
December 2024
Grupo de Patología Musculoesquelética, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain.
Background: Rheumatology has experienced notable changes in the last decades. New drugs, including biologic agents and Janus kinase (JAK) inhibitors, have blossomed. Concepts such as window of opportunity, arthralgia suspicious for progression, or difficult-to-treat rheumatoid arthritis (RA) have appeared; and new management approaches and strategies such as treat-to-target have become popular.
View Article and Find Full Text PDFHepatobiliary Pancreat Dis Int
December 2024
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Jinan Microecological Biomedicine Shandong Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310000, China. Electronic address:
Background: Coronavirus disease 2019 (COVID-19) is a global pandemic with high mortality, and the treatment options for the severe patients remain limited. Previous studies reported the altered gut microbiota in severe COVID-19. But there are no comprehensive data on the role of microbial metabolites in COVID-19 patients.
View Article and Find Full Text PDFClin Immunol
December 2024
Department of Microbiology, Gachon University College of Medicine, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea; Korea mRNA Vaccine Initiative, Gachon University, Seongnam, Republic of Korea. Electronic address:
Over the last decade, mRNA vaccines development has shown significant advancement, particularly during the COVID-19 pandemic. This comprehensive review examines the efficacy of pivotal vaccines against emerging COVID-19 variants and strategies for enhancing vaccine effectiveness. It also explores the versatility of mRNA technology in addressing other infectious diseases such as influenza, respiratory syncytial virus, HIV, cytomegalovirus, Ebola, Zika, Rabies, and Nipah viruses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!