Cuticular waxes-A shield of barley mutant in CBP20 (Cap-Binding Protein 20) gene when struggling with drought stress.

Plant Sci

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.

Published: November 2020

CBP20 (Cap-Binding Protein 20) encodes a small subunit of nuclear Cap-Binding Complex (nCBC) that together with CBP80 binds mRNA cap. We previously described barley hvcbp20.ab mutant that demonstrated higher leaf water content and faster stomatal closure than the WT after drought stress. Hence, we presumed that the better water-saving mechanism in hvcbp20.ab may result from the lower permeability of epidermis that together with stomata action limit the water evaporation under drought stress. We asked whether hvcbp20.ab exhibited any differences in wax load on the leaf surface when subjected to drought in comparison to WT cv. 'Sebastian'. To address this question, we investigated epicuticular wax structure and chemical composition under drought stress in hvcbp20.ab mutant and its WT. We showed that hvcbp20.ab mutant exhibited the increased deposition of cuticular wax. Moreover, our gene expression results suggested a role of HvCBP20 as a negative regulator of both, the biosynthesis of waxes at the level of alkane-forming, and waxes transportation. Interestingly, we also observed increased wax deposition in Arabidopsis cbp20 mutant exposed to drought, which allowed us to describe the CBP20-regulated epicuticular wax accumulation under drought stress in a wider evolutionarily context.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2020.110593DOI Listing

Publication Analysis

Top Keywords

drought stress
20
hvcbp20ab mutant
12
cbp20 cap-binding
8
cap-binding protein
8
epicuticular wax
8
drought
7
mutant
5
stress
5
hvcbp20ab
5
wax
5

Similar Publications

Identification and characterization of GRAS genes in passion fruit (Passiflora edulis Sims) revealed their roles in development regulation and stress response.

Plant Cell Rep

January 2025

Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

Twenty-nine GRAS genes were identified in passion fruit, the N-terminal regions and 3D (three-dimensional) structures were closely related with their tissue-specific expression patterns. Candidate PeGRASs for enhancing stress resistance were identified. Passion fruit (Passiflora edulis Sims) is a tropical fruit crop with significant edible and ornamental value, but its growth and development are highly sensitive to environmental conditions.

View Article and Find Full Text PDF

An R2R3-MYB transcription factor PdbMYB6 enhances drought tolerance by mediating reactive oxygen species scavenging, osmotic balance, and stomatal opening.

Plant Physiol Biochem

January 2025

College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China. Electronic address:

Drought is a major environmental challenge that hinders the growth and development of plants. R2R3-MYB transcription factors (TFs) play a vital role in mediating responses to abiotic stress; however, their specific functions in Populus davidiana × Populus bolleana hybrid poplar plants remain underexplored. This study focused on PdbMYB6, a novel R2R3-MYB TF identified in P.

View Article and Find Full Text PDF

Bacillus pumilus G5 combined with silicon enhanced flavonoid biosynthesis in drought-stressed Glycyrrhiza uralensis Fisch. by regulating jasmonate, gibberellin and ethylene crosstalk.

Plant Physiol Biochem

January 2025

College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan, Yinchuan, 750004, China. Electronic address:

Drought stress poses a significant threat to global agricultural production, including the cultivation of medicinal plants. Plant growth-promoting bacteria (PGPB) and the eco-friendly element silicon (Si) are known to alleviate the adverse effects of drought stress. This study examines how inoculation with Bacillus pumilus G5 or/and Si influences plant hormone signaling and flavonoid biosynthesis pathways in drought-stressed Glycyrrhiza uralensis Fisch.

View Article and Find Full Text PDF

Decoding the genetic blueprint: regulation of key agricultural traits in sorghum.

Adv Biotechnol (Singap)

September 2024

School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, P. R. China.

Sorghum, the fifth most important crop globally, thrives in challenging environments such as arid, saline-alkaline, and infertile regions. This remarkable crop, one of the earliest crops domesticated by humans, offers high biomass and stress-specific properties that render it suitable for a variety of uses including food, feed, bioenergy, and biomaterials. What's truly exciting is the extensive phenotypic variation in sorghum, particularly in traits related to growth, development, and stress resistance.

View Article and Find Full Text PDF

Background: Plant senescence is a genetically controlled process that results in the programmed death of plant cells, organs, or the entire plant. This process is essential for nutrient recycling and supports the production of plant offspring. Environmental stresses such as drought and heat can hasten senescence, reducing photosynthetic efficiency and significantly affecting crop quality and yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!