The skeleton is a dynamic tissue continuously adapting to mechanical stimuli. Although matrix-embedded osteocytes are considered as the key mechanoresponsive bone cells, all other skeletal cell types are principally exposed to macroenvironmental and microenvironmental mechanical influences that could potentially affect their activities. It was recently reported that Piezo1, one of the two mechanically activated ion channels of the Piezo family, functions as a mechanosensor in osteoblasts and osteocytes. Here we show that Piezo1 additionally plays a critical role in the process of endochondral bone formation. More specifically, by targeted deletion of Piezo1 or Piezo2 in either osteoblast (Runx2Cre) or osteoclast lineage cells (Lyz2Cre), we observed severe osteoporosis with numerous spontaneous fractures specifically in Piezo1 mice. This phenotype developed at an early postnatal stage and primarily affected the formation of the secondary spongiosa. The presumptive Piezo1 osteoblasts in this region displayed an unusual flattened appearance and were positive for type X collagen. Moreover, transcriptome analyses of primary osteoblasts identified an unexpected induction of chondrocyte-related genes in Piezo1 cultures. Because Runx2 is not only expressed in osteoblast progenitor cells, but also in prehypertrophic chondrocytes, these data suggested that Piezo1 functions in growth plate chondrocytes to ensure trabecular bone formation in the process of endochondral ossification. To confirm this hypothesis, we generated mice with Piezo1 deletion in chondrocytes (Col2a1Cre). These mice essentially recapitulated the phenotype of Piezo1 animals, because they displayed early-onset osteoporosis with multiple fractures, as well as impaired formation of the secondary spongiosa with abnormal osteoblast morphology. Our data identify a previously unrecognized key function of Piezo1 in endochondral ossification, which, together with its role in bone remodeling, suggests that Piezo1 represents an attractive target for the treatment of skeletal disorders. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbmr.4198 | DOI Listing |
J Dent Res
January 2025
Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA.
The upstream mechanobiological pathways that regulate the downstream mineralization rates in periodontal tissues are limitedly understood. Herein, we spatially colocalized and correlated compression and tension strain profiles with the expressions of mechanosensory ion channels (MS-ion) TRPV4 and PIEZO1, biometal zinc, mitochondrial function marker (), cell senescence indicator (), and oxygen status marker hypoxia-inducible factor-1α () in rats fed hard and soft foods. The observed zinc and related cellular homeostasis in vivo were ascertained by TRPV4 and PIEZO1 agonists and antagonists on human periodontal ligament fibroblasts ex vivo.
View Article and Find Full Text PDFAugmented extracellular matrix (ECM) stiffness is a mechanical hallmark of cancer. Mechanotransduction studies have extensively probed the mechanisms by which ECM stiffness regulates intracellular communication. However, the influence of stiffness on intercellular communication aiding tumor progression in three-dimensional microenvironments remains unknown.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey.
Chronic venous insufficiency (CVI), a chronic vascular dysfunction, is a common health problem that causes serious complications such as painful varicose veins and even skin ulcers. Identifying the underlying genetic and epigenetic factors is important for improving the quality of life of individuals with CVI. In the literature, many genes, variants, and miRNAs associated with CVI have been identified through genomic and transcriptomic studies.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
Spinal cord injury (SCI) leads to acute tissue damage that disrupts the microenvironmental homeostasis of the spinal cord, inhibiting cell survival and function, and thereby undermining treatment efficacy. Traditional stem cell therapies have limited success in SCI, due to the difficulties in maintaining cell survival and inducing sustained differentiation into neural lineages. A new solution may arise from controlling the fate of stem cells by creating an appropriate mechanical microenvironment.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Physiology & Biophysics, UC Irvine, Irvine, California; Department of Biomedical Engineering, UC Irvine, Irvine, California; Center for Complex Biological Systems, UC Irvine, Irvine, California; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, California. Electronic address:
The mechanically-activated ion channel PIEZO1 is critical to numerous physiological processes, and is activated by diverse mechanical cues. The channel is gated by membrane tension and has been found to be mobile in the plasma membrane. We employed single particle tracking (SPT) of endogenous, tdTomato-tagged PIEZO1 using Total Internal Reflection Fluorescence Microscopy in live cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!