Background: Posterior atlantoaxial fixation with screw rod forms an approximate "II" shape or "H" increasing transverse link for better stability. In order to improve stability and in consideration of difficult placement of transverse connecting rod, possibility of inadequate bone graft, some scholars have preliminarily researched biomechanics of a novel crossed rod as an approximate "X" configuration of screw rod.

Purpose: The aim of this study was to evaluate and compare the biomechanics of the crossed and parallel rod configurations in the screw rod system for posterior atlantoaxial fixation on a cadaveric model.

Methods: Six fresh cervical specimens were used to complete the range of motion (ROM) testing by applying pure moments of ± 2.0 nm. Following intact state and under destabilization testing, screws were implanted. The specimens were then tested in the following sequence: Group BLS + PR (C2 bilateral laminar screws + parallel rod), Group BLS + CR (C2 bilateral laminar screws + crossed rod), LPRLS + PR (C2 left pedicle screw and right laminar screw + parallel rod), LPRLS + CR (C2 left pedicle screw and right laminar screw + crossed rod), BPS + PR (C2 bilateral pedicle screws + parallel rod) and BPS + CR (C2 bilateral pedicle screws + crossed rod). The ROM of the C1-2 segments was measured in flexion-extension, lateral bending and axial rotation. Six surgical constructs were compared between the groups and with intact condition, respectively.

Results: The six fixed modes significantly increased stability compared with both the intact and destabilization group in flexion-extension, lateral bending and axial rotation (p < .05). In extension, BPS + CR and BLS + CR showed greater stability than BLS + PR (p < .05). During flexion, the six fixation methods showed no statistical significance (p > .05). In left lateral bending, stability of the other five screw rod fixation techniques significantly increased when compared with BLS + PR (p < .05). In the right lateral bending direction, the stability of BLS + PR was worse than that of BPS + CR and BPS + PR (p < .05). In the left axial rotation, stability of BLS + CR, LPRLS + CR and BPS + CR was greater than that of BLS + PR, LPRLS + PR and BPS + PR (p < .05). In the right axial rotation, the stability of BPS + CR and BLS + CR was greater than that of BLS + PR (p < .05).

Conclusion: The six investigated fixation methods provide sufficient biomechanical stability. The crossed rod configuration can further enhance the axial rotation stability of the screw rod system, which consists of C1 bilateral pedicle and C2 pedicle, or C2 lamina screws. The crossed rod can also improve the stability of the screw rod system made up of C1 bilateral pedicle and C2 lamina screws in lateral bending and extension. The crossed rod configuration is reliable and provides superior stability for clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00586-020-06655-6DOI Listing

Publication Analysis

Top Keywords

rod
12
crossed parallel
8
parallel rod
8
rod configurations
8
posterior atlantoaxial
8
atlantoaxial fixation
8
screw rod
8
bilateral laminar
8
screws + parallel rod
8
screws + crossed rod
8

Similar Publications

Objective: To determine the clinical microbial synergy in skin and soft tissue infections (SSTIs) based on bacterial groups and explore the likelihood ratios of clinical parameters.

Study Design: Descriptive cross-sectional study. Place and Duration of the Study: The study was conducted at the Department of Microbiology, University of Karachi in collaboration with Jinnah Postgraduate Medical Centre, and Jinnah Sindh Medical University, Karachi, Pakistan, from June 2023 to May 2024.

View Article and Find Full Text PDF

In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions.

View Article and Find Full Text PDF

Infinite Organic Solid-Solution Semiconductors with Continuous Evolution in Film Morphology, Crystalline Lattice and Electrical Properties.

Small

January 2025

Key Laboratory of Automobile Materials of Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China.

Constructing a solid solution is an effective strategy for regulating the properties of composite organic semiconductors. However, there presents significant challenges in fabrication and understanding of organic solid-solution semiconductors. In this study, infinite solid-solution semiconductors are successfully achieved by integrating rod-like organic molecules, thereby overcoming the limitations of current organic composite semiconductors.

View Article and Find Full Text PDF

Solar-based technologies for removing potentially toxic metals from water sources: a review.

Environ Sci Pollut Res Int

January 2025

Departamento de Ciência E Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil.

Technological advances have led to a proportional increase in the deposition of contaminants across various environmental compartments, including water sources. Heavy metals, also known as potentially toxic metals, are of particular concern due to their significant harmful impacts on environmental and human health. Among the available methods for mitigating the threat of these metals in water, solar radiation-based technologies stand out for their cleanliness, cost-effectiveness, and efficiency in removing or reducing the toxicity of heavy metals.

View Article and Find Full Text PDF

Purpose: To determine how Hardy-Rand-Rittler (HRR) colour vision testing correlates with visual functional and structural assessments in Cone and Cone-Rod Dystrophy.

Methods: Thirty-four Cone and 69 Cone-Rod Dystrophy patients diagnosed by electroretinography (ERG) at the Save Sight Institute in Sydney were included in a retrospective analysis. Each patient's HRR colour vision test scores were compared with markers of cone and rod system function including visual acuity (VA), ERG responses, changes on Spectral Domain Optical Coherence Tomography (OCT) and Fundus Autofluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!