Extensive transient absorption studies on hybrid organic-inorganic lead halide perovskites have elucidated many optical properties important for their device performance. Despite the enormous progress, the derivative shaped photoinduced absorption feature in transient spectra that is above the bandgap has many explanations, including the photoinduced Stark effect, where the bandgap is blue shifted due to a local electric field generated by charges. In this work, we employ broad band transient absorption and two-dimensional electronic spectroscopy (2DES) to examine the early transient events after photoexcitation of [CH(NH)]CsPbBr (FACsPbBr). 2DES resolves a photomodulation feature at the excitation energy of the exciton, suggesting the presence of a dipole field created by a polaron pair shifting the exciton transition to higher energies. As this polaron pair dissociates over 200 fs, the exciton transition shifts to higher energies over the same time scale, evidenced by the 2DES diagonal energy spectra. Given that the observations are well explained in terms of the Stark effect, our work provides extra grounds to support the Stark effect assignment of the above-gap photoinduced absorption. Furthermore, our study reports on the time scale of charge generation, contributing to the fundamental understanding of mixed-cation lead bromide perovskite photophysics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c03044DOI Listing

Publication Analysis

Top Keywords

charge generation
8
photoinduced stark
8
mixed-cation lead
8
lead bromide
8
bromide perovskite
8
transient absorption
8
photoinduced absorption
8
polaron pair
8
exciton transition
8
higher energies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!