Magnetic double-network composite capable of large recoverable deformation.

Soft Matter

Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China. and Soft Matter GI-CoRE, Hokkaido University, Sapporo 060-0810, Japan.

Published: January 2021

This paper presents the design and fabrication of a magnetic double network (DN) composite, which consists of permanent magnet chains embedded in an elastomer matrix, and was capable of large yet fully recoverable deformation. The initially connected magnets served as reusable sacrificial components in the composite. The strong magnetic attraction between neighboring magnetics endowed the composite with the high strength while the compliance of the elastomer matrix provided the high extensibility. Having a similar mechanism as DN gels, the composite was found to be significantly tougher than either of the constituents. The nonlinear behavior in the composite separated it into two coexisting phases - a softer phase with separated magnet links and a stiffer phase with connected magnet links - which led to the stress plateau on the tensile curve. Further stretching was manifested by the growth of the disconnected softer phase at the expense of the linked stiffer phase, until all magnets were separated. The unloading curves appeared drastically different from the loading curves, as the force needed to separate two magnets was much higher than the force at which two separated magnets snapped back. Such asymmetry between loading and unloading was the main cause of the hysteresis in the stress-strain curve and the energy dissipation. To further understand the physical mechanism and the damage process of the magnetic DN composite, a simple model was developed to examine the deformation and damage dissipation process of composite. With very few parameters, the model predictions agree qualitatively with the measured properties of the material, and the difference can be further reduced by accounting for the interfacial friction/adhesion, a second means of energy dissipation. With a combination of desired properties including high stretchability, self-healing, and high toughness, the magnetic DN composite is a viable candidate for various applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0sm01613fDOI Listing

Publication Analysis

Top Keywords

composite
9
capable large
8
recoverable deformation
8
elastomer matrix
8
softer phase
8
magnet links
8
stiffer phase
8
energy dissipation
8
magnetic composite
8
magnetic
5

Similar Publications

Improving the regeneration of the tendon-bone interface (TBI) helps to decrease the risk of rotator cuff retears after repair surgeries. Unfortunately, the lack of inherent healing capacity of the TBI, insufficient mechanical properties, and abnormal and persistent inflammation during repair are the key factors leading to suboptimal healing of the rotator cuff. Therefore, a high-strength rotator cuff repair material capable of regulating the unbalanced immune response and enhancing the regeneration of the TBI is urgently needed.

View Article and Find Full Text PDF

Anchoring of Probiotic-Membrane Vesicles in Hydrogels Facilitates Wound Vascularization.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.

Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.

View Article and Find Full Text PDF

Prcis: Trabecular cutting minimally invasive glaucoma surgery like bent ab interno needle goniectomy (BANG) when performed in baseline aqueous angiography identified low aqueous humor outflow regions, results in greater success of intraocular pressure reduction.

Purpose: To study the efficacy of Bent Ab Interno Needle Goniectomy (BANG) in high versus low aqueous humor outflow (AHO) regions as determined by Aqueous Angiography(AA) in patients with primary open angle glaucoma (POAG).

Methods: A prospective, single-centre, pilot, randomized control trial recruited 30 eyes of 30 patients of POAG and visually significant cataract (45-80 y) and were randomised into two groups ("A": BANG performed in the high-flow regions and "B": BANG performed in the low-flow regions) of 15 each.

View Article and Find Full Text PDF

Systematic social observation (SSO) is an objective method of measuring the neighborhood physical and social characteristics. This study aimed to build intraurban indicators using the SSO method and compare them between two slums and their surroundings in a Brazilian capital. The simple indicators were calculated using the ratio estimator method, and grouped into domains.

View Article and Find Full Text PDF

Family dynamics and support network of family caregivers of people with progressive cancer.

Rev Gaucha Enferm

January 2025

Universidade Federal de São Paulo, Escola Paulista de Enfermagem, São Paulo, São Paulo, Brasil.

Objective: To analyze family dynamics, the support network of family caregivers of individuals with progressive cancer, and their needs for comprehensive care.

Method: Qualitative, descriptive study developed based on the Calgary Family Assessment Model framework. It was conducted from September 2022 to April 2023, through participant observation at a public health institution in São Paulo and interviews with six family caregivers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!