Synergy between Wsp1 and Dip1 may initiate assembly of endocytic actin networks.

Elife

Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, United States.

Published: November 2020

AI Article Synopsis

  • The Arp2/3 complex is crucial for forming branched actin networks that facilitate endocytosis at the cell cortex.
  • Dip1 activates Arp2/3 without needing existing actin filaments, while Wsp1 was previously thought to only help with branching from preexisting filaments.
  • New findings reveal that Wsp1 also plays a key role in initiating actin networks by working together with Dip1, even in the absence of existing filaments.

Article Abstract

The actin filament nucleator Arp2/3 complex is activated at cortical sites in to assemble branched actin networks that drive endocytosis. Arp2/3 complex activators Wsp1 and Dip1 are required for proper actin assembly at endocytic sites, but how they coordinately control Arp2/3-mediated actin assembly is unknown. Alone, Dip1 activates Arp2/3 complex without preexisting actin filaments to nucleate 'seed' filaments that activate Wsp1-bound Arp2/3 complex, thereby initiating branched actin network assembly. In contrast, because Wsp1 requires preexisting filaments to activate, it has been assumed to function exclusively in propagating actin networks by stimulating branching from preexisting filaments. Here we show that Wsp1 is important not only for propagation but also for initiation of endocytic actin networks. Using single molecule total internal reflection fluorescence microscopy we show that Wsp1 synergizes with Dip1 to co-activate Arp2/3 complex. Synergistic co-activation does not require preexisting actin filaments, explaining how Wsp1 contributes to actin network initiation in cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7707826PMC
http://dx.doi.org/10.7554/eLife.60419DOI Listing

Publication Analysis

Top Keywords

arp2/3 complex
20
actin networks
16
actin
11
wsp1 dip1
8
assembly endocytic
8
endocytic actin
8
branched actin
8
actin assembly
8
preexisting actin
8
actin filaments
8

Similar Publications

Background: The Arp2/3 complex is a key regulator of tumor metastasis, and targeting its subunits offers potential for anti-metastatic therapy. However, the expression profiles, prognostic relevance, and diagnostic value of its subunits across cancers remain poorly understood. This study aims to investigate the clinical relevance of Arp2/3 complex subunits, particularly ARPC1A, in pan-cancer, and to further analyze the potential biological mechanisms of ARPC1A, as well as its association with immune infiltration and chemotherapy drug sensitivity.

View Article and Find Full Text PDF

Immunotherapy has elicited significant improvements in outcomes for patients with several tumor types. However, the immunosuppressive microenvironment in glioblastoma restricts the therapeutic efficacy of immune checkpoint blockade (ICB). In this study, we investigated which components of the immune microenvironment contribute to ICB failure in glioblastoma to elucidate the underlying causes of immunotherapeutic resistance.

View Article and Find Full Text PDF

Electrical Forces Improve Memory in Old Age.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

This penultimate chapter is based on a single paper published in Nature in 2022. I have used it specifically as an exemplar, in this case to show that memory improvement in old age may be regulated by a multiplicity of electrical forces. However, I include it because I believe that one could pick almost any other substantial single paper and show that a completely disparate set of biological mechanisms similarly depend crucially on multiple electrical forces.

View Article and Find Full Text PDF

Two ligands of Arp2/3 complex, yeast coronin and GMF, interact and synergize in pruning branched actin networks.

J Biol Chem

January 2025

Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA. Electronic address:

The rapid turnover of branched actin networks underlies key in vivo processes such as lamellipodial extension, endocytosis, phagocytosis, and intracellular transport. However, our understanding of the mechanisms used to dissociate, or 'prune', branched filaments has remained limited. Glia maturation factor (GMF) is a cofilin family protein that binds to Arp2/3 complex and catalyzes branch dissociation.

View Article and Find Full Text PDF

Background: ARPC1B has been identified as a key regulator of malignant biological behavior in various tumors. However, its specific role in clear cell renal cell carcinoma (ccRCC) remains poorly understood. This study aims to evaluate the influence of ARPC1B on the prognosis and disease progression in ccRCC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!