Cobalt molybdate nanorods decorated on boron-doped graphitic carbon nitride sheets for electrochemical sensing of furazolidone.

Mikrochim Acta

Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.

Published: November 2020

A nanorod-like structured CoMoO embedded on boron doped-graphitic carbon nitride composite (CoMoO/BCN) has been developed by a simple sonochemical method for electrochemical detection of furazolidone (FUZ). Interestingly, the impedance of CoMoO/BCN fabricated screen-printed carbon electrode (SPCE) possesses a lower resistance charge transfer (R), which favors superior electrochemical detection of FUZ. Such CoMoO/BCN/SPCE exhibits an ultralow detection limit of 1.6 nM with a concentration range of 0.04-408.9 μM, and high sensitivity of 11.6 μA μM cm by DPV method. In addition, biological and water samples were used for demonstration of practical application of CoMoO/BCN/SPCE towards electrochemical detection of FUZ, and the result exhibits a satisfactory recovery.Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-020-04590-3DOI Listing

Publication Analysis

Top Keywords

electrochemical detection
12
carbon nitride
8
detection fuz
8
cobalt molybdate
4
molybdate nanorods
4
nanorods decorated
4
decorated boron-doped
4
boron-doped graphitic
4
graphitic carbon
4
nitride sheets
4

Similar Publications

Target-regulated AgS/FeOOH heterojunction activity: a direct label-free photoelectrochemical immunosensor.

Mikrochim Acta

January 2025

College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.

Myoglobin (Mb), an important cardiac marker, plays a crucial role in diagnosing, monitoring, and evaluating the condition of patients with cardiovascular diseases. Here, we propose a label-free photoelectrochemical (PEC) sensor for the detection of Mb through target regulated the photoactivity of AgS/FeOOH heterojunction. The AgS/FeOOH nanospindles were synthesized and served as a sensing platform for the fabrication of bio-recognized process for Mb.

View Article and Find Full Text PDF

Monitoring reactive nitrogen species (RNS) in complex biological media is essential for evaluating the health status of living organisms; however, biofouling on the sensor surface restricts its applications. To overcome this issue, we developed an antifouling electrochemical sensing platform using copper-platinum bimetallic nanoparticles/N-doped biomass porous carbon fibres (Cu-PtNPs/N-BCF) for directly detecting peroxynitrite anion (ONOO), a major type of RNS. Cyclic voltammetry measurements demonstrated that the Cu-PtNPs/N-BCF-2 nanocomposite, synthesised at a molar ratio of 1:1 between Co and Zn, exhibited exceptional electrocatalytic activity for ONOO oxidation.

View Article and Find Full Text PDF

Detection and analysis of organochlorine pesticides (OCP) residue is getting significant research importance because of their extensive use despite their hazardous effects on the health of people and the ecosystem. Despite the implementation of regulations and bans to safeguard human health and the environment, reports frequently reveal the continued use of these harmful chemicals in quantities exceeding the recommended limits set by regulatory boards. Data on the use of OCP from India, the most populous country, and African countries is not very encouraging.

View Article and Find Full Text PDF

Cystatin C (Cys-C) is emerging as a critical biomarker for assess gestational diabetes mellitus (GDM), a condition that significantly impacts maternal and fetal health. In this study, we developed a novel label-free electrochemical immunosensor designed for point-of-care applications, offering lower reagent consumption and rapid detection of Cys-C in pregnant women with GDM. Compared to traditional enzyme-linked immunosorbent assays (ELISA), the sensor demonstrates enhanced sensitivity, reduced reagent usage, and faster detection.

View Article and Find Full Text PDF

Bioreceptors are increasingly popular for selective aroma sensing but face challenges with receptor separation and cell culture. Here, we developed a bioreceptor-free electronic nose employing Mn-metal organic framework (Mn-MOF) nanonets as sensing materials for rapid electrochemical quantification of (E)-2-hexenal, a characteristic aroma commonly found in various foods. A simple solvent-mediated morphology engineering technology was proposed to create Mn-MOF structures, including nanoparticles, nanowires, and nanonets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!