Background: Different closed kinematic tasks may present different magnitudes of knee abduction, foot pronation, and foot plantar pressure and area. Although there are plenty of studies comparing knee abduction between different tasks, the literature lacks information regarding differences in foot pronation and foot plantar pressure and area. We compared foot angular displacement in the frontal plane and foot plantar pressure and area among five closed kinematic tasks.

Methods: Forefoot and rearfoot angular displacement and foot plantar pressure and area were collected in 30 participants while they performed the following tasks: stair descent, single-leg step down, single-leg squat, single-leg landing, and drop vertical jump. Repeated-measures analyses of variance were used to investigate differences between tasks with α = 0.05.

Results: Single-leg squat and stair descent had increased foot total plantar area compared with single-leg landing (P = .005 versus .027; effect size [ES] = 0.66), drop vertical jump (P = .001 versus P = .001; ES = 0.38), and single-leg step down (P = .01 versus P = .007; ES = 0.43). Single-leg landing and single-leg step down had greater foot total plantar area compared with drop vertical jump (P = .026 versus P = .014; ES = 0.54). There were differences also in rearfoot and midfoot plantar area and pressure and forefoot plantar pressure.

Conclusions: Differences in foot-striking pattern, magnitude of ground reaction force, and task speed might explain these findings. Clinicians should consider these findings to improve decisions about tasks used during rehabilitation of patients with foot conditions.

Download full-text PDF

Source
http://dx.doi.org/10.7547/17-226DOI Listing

Publication Analysis

Top Keywords

foot plantar
20
plantar area
16
plantar pressure
16
pressure area
16
closed kinematic
12
area compared
12
single-leg step
12
single-leg landing
12
drop vertical
12
vertical jump
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!