Circulating Tumour DNA to Guide Treatment of Gastrointestinal Malignancies.

Visc Med

Division of Systems Biology and Personalised Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.

Published: October 2020

Background: Gastrointestinal cancers are among the most common cancers worldwide and account for a high proportion of cancer-related mortality. Advancements to improve outcomes are constrained by the lack of biomarkers that can offer early diagnostic and prognostic information as traditional serological tumour markers and conventional imaging approaches are not able to provide early information regarding disease recurrence and treatment outcomes. Recent advances in technology have allowed the detection of circulating tumour DNA (ctDNA) in plasma, nucleic acid fragments released into the circulation from primary or metastatic lesions undergoing apoptosis and necrosis. A growing body of evidence has emerged supporting the use of ctDNA in many aspects of cancer care.

Summary: This review focuses on the potential role of ctDNA in the management of patients with gastrointestinal cancers including colorectal, pancreatic, and upper gastrointestinal cancers. In this review, we discuss its possible utility in screening, detection of minimal residual disease and prognostication, longitudinal surveillance, and identification of therapeutic targets and resistance incorporating recent literature and ongoing randomised clinical trials.

Key Messages: ctDNA has substantial potential as a clinically useful marker in the management of gastrointestinal cancers from cancer screening through to treatment of advanced disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590785PMC
http://dx.doi.org/10.1159/000509657DOI Listing

Publication Analysis

Top Keywords

gastrointestinal cancers
16
circulating tumour
8
tumour dna
8
gastrointestinal
5
cancers
5
dna guide
4
guide treatment
4
treatment gastrointestinal
4
gastrointestinal malignancies
4
malignancies background
4

Similar Publications

Exploring the microbiome-gut-testis axis in testicular germ cell tumors.

Front Cell Infect Microbiol

January 2025

Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia.

The microbiome-gut-testis axis has emerged as a significant area of interest in understanding testicular cancer, particularly testicular germ cell tumors (TGCTs), which represent the most common malignancy in young men. The interplay between the gut and testicular microbiomes is hypothesized to influence tumorigenesis and reproductive health, underscoring the complex role of microbial ecosystems in disease pathology. The microbiome-gut-testis axis encompasses complex interactions between the gut microbiome, systemic immune modulation, and the local microenvironment of the testis.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most prevalent and deadly malignancies worldwide. Recently, ferroptosis, a novel form of regulated cell death characterized by iron dependency and lipid peroxidation, has garnered significant attention from researchers. The mechanisms underlying ferroptosis, including intracellular iron levels, lipid peroxidation, and antioxidant system regulation, offer new insights into cancer treatment strategies.

View Article and Find Full Text PDF

Background: Adenocarcinoma of the esophagogastric junction (AEGJ) is a highly aggressive tumor that frequently metastasizes to the liver. Understanding the cellular and molecular mechanisms that drive this process is essential for developing effective therapies.

Methods: We employed single-cell RNA sequencing to analyze the tumor heterogeneity and microenvironmental landscape in patients with AEGJ liver metastases.

View Article and Find Full Text PDF

Gastric cancer continues to be a leading global health concern, with current therapeutic approaches requiring significant improvement. While the disruption of iron metabolism in the advancement of gastric cancer has been well-documented, the underlying regulatory mechanisms remain largely unexplored. Additionally, the complement C5a-C5aR pathway has been identified as a crucial factor in gastric cancer development.

View Article and Find Full Text PDF

Background: Colon adenocarcinoma (COAD) is a malignancy with a high mortality rate and complex biological characteristics and heterogeneity, which poses challenges for clinical treatment. Anoikis is a type of programmed cell death that occurs when cells lose their attachment to the extracellular matrix (ECM), and it plays a crucial role in tumor metastasis. However, the specific biological link between anoikis and COAD, as well as its mechanisms in tumor progression, remains unclear, making it a potential new direction for therapeutic strategy research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!