Increasing the growth rate of the industrial host is a promising target to rise productivities of growth coupled product formation. As a prerequisite, detailed knowledge about the tight regulation network is necessary for identifying promising metabolic engineering goals. Here, we present comprehensive metabolic and transcriptional analysis of ATCC 13032 growing under glucose limited chemostat conditions with μ = 0.2, 0.3, and 0.4 h. Intermediates of central metabolism mostly showed rising pool sizes with increasing growth. C-metabolic flux analysis (C-MFA) underlined the fundamental role of central metabolism for the supply of precursors, redox, and energy equivalents. Global, growth-associated, concerted transcriptional patterns were not detected giving rise to the conclusion that glycolysis, pentose-phosphate pathway, and citric acid cycle are predominately metabolically controlled under glucose-limiting chemostat conditions. However, evidence is found that transcriptional regulation takes control over glycolysis once glucose-rich growth conditions are installed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594717PMC
http://dx.doi.org/10.3389/fbioe.2020.584614DOI Listing

Publication Analysis

Top Keywords

chemostat conditions
12
glucose limited
8
limited chemostat
8
increasing growth
8
central metabolism
8
revisiting growth
4
growth modulon
4
modulon glucose
4
conditions
4
conditions increasing
4

Similar Publications

Understanding microbial syngas fermentation rates.

Appl Microbiol Biotechnol

December 2024

Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.

Syngas fermentation to ethanol has reached industrial production. Further improvement of this process would be aided by quantitative understanding of the influence of imposed reaction conditions on the fermentation performance. That requires a reliable model of the microbial kinetics.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the yeast C. jadinii grows on ethanol as a carbon source, looking specifically at growth rates, energy requirements, and biomass composition across different culture methods.
  • In ethanol-limited conditions, C. jadinii CBS 621 achieves effective biomass yields and demonstrates a stable protein content, even at low growth rates, indicating its potential for producing single-cell protein.
  • The research also finds that various C. jadinii strains grow rapidly on ethanol, and the results from chemostat cultures can help model production outcomes in larger fed-batch systems, highlighting differences in protein content due to cultivation conditions.
View Article and Find Full Text PDF

Selection on sporulation strategies in a metapopulation can lead to coexistence.

Evolution

November 2024

Department of Ecology, Evolution, and Marine Biology, UC Santa Barbara, Santa Barbara, CA 93106, USA.

In constant environments the coexistence of similar species or genotypes is generally limited. In a metapopulation context, however, types that utilize the same resource but are distributed along a competition-colonization trade-off, can coexist. Much thought in this area focuses on a generic trade-off between within-deme competitive ability and between-deme dispersal ability.

View Article and Find Full Text PDF

Simultaneous saccharification and fermentation for D-lactic acid production using a metabolically engineered Escherichia coli adapted to high temperature.

Biotechnol Biofuels Bioprod

November 2024

Department of Cellular Engineering and Biocatalyst. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México.

Article Synopsis
  • Escherichia coli JU15 is engineered to efficiently produce D-lactic acid from C5 and C6 sugars at 37 °C, but requires strains that can grow near 50 °C for optimal enzyme activity in lignocellulosic biomass processing.
  • The new strain GT48 was developed through adaptive evolution to thrive at temperatures up to 48 °C, successfully fermenting glucose to D-lactate at 47 °C with optimal pH at 6.3.
  • GT48 outperformed the original strain by producing D-lactate at significantly higher levels (over 1.4 times better) when used in a simultaneous saccharification and fermentation process without needing a pre-saccharification stage.
View Article and Find Full Text PDF

Protocol to study human gut bacterial communities and rhythmicity ex vivo using a chemostat system.

STAR Protoc

December 2024

Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; TUMCREATE, 1 CREATE Way, #10-02 CREATE Tower, Singapore 138602, Singapore; ZIEL Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany. Electronic address:

Chemostat systems can be used to cultivate complex intestinal microbial communities ex vivo. Here, we present a protocol to transfer bacteria from human fecal material into chemostat systems as well as settings to simulate infant or adult colonic conditions. We describe the experimental setup, media design, donor selection, 16S rRNA amplicon sequencing, and circadian analysis of bacterial abundance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!