Perisynaptic astrocytic processes are an integral part of central nervous system synapses; however, the molecular mechanisms that govern astrocyte-synapse adhesions and how astrocyte contacts control synapse formation and function are largely unknown. Here we use an in vivo chemico-genetic approach that applies a cell-surface fragment complementation strategy, Split-TurboID, and identify a proteome that is enriched at astrocyte-neuron junctions in vivo, which includes neuronal cell adhesion molecule (NRCAM). We find that NRCAM is expressed in cortical astrocytes, localizes to perisynaptic contacts and is required to restrict neuropil infiltration by astrocytic processes. Furthermore, we show that astrocytic NRCAM interacts transcellularly with neuronal NRCAM coupled to gephyrin at inhibitory postsynapses. Depletion of astrocytic NRCAM reduces numbers of inhibitory synapses without altering glutamatergic synaptic density. Moreover, loss of astrocytic NRCAM markedly decreases inhibitory synaptic function, with minor effects on excitation. Thus, our results present a proteomic framework for how astrocytes interface with neurons and reveal how astrocytes control GABAergic synapse formation and function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011649 | PMC |
http://dx.doi.org/10.1038/s41586-020-2926-0 | DOI Listing |
Wound healing after spinal cord injury involves highly coordinated interactions among multiple cell types, which is poorly understood. Astrocytes play a central role in creating a border against the non-neural lesion core. To do so, astrocytes undergo dramatic morphological changes by first thickening the processes and then elongating and overlap them.
View Article and Find Full Text PDFAm J Obstet Gynecol
August 2023
Department of Medicine, Division of Nephrology, Cedars-Sinai Medical Center, Los Angeles, CA.
Background: Perinatal mood and anxiety disorders encompass a range of mental health disorders that occur during pregnancy and up to 1 year postpartum, affecting approximately 20% of women. Traditional risk factors, such as a history of depression and pregnancy complications including preeclampsia, are known. Their predictive utility, however, is not specific or sensitive enough to inform clinical decision-making or prevention strategies for perinatal mood and anxiety disorders.
View Article and Find Full Text PDFFront Neurosci
April 2022
School of Biosciences, The University of Sheffield, Sheffield, United Kingdom.
Hypothalamic tanycytes are neural stem and progenitor cells, but little is known of how they are regulated. Here we provide evidence that the cell adhesion molecule, NrCAM, regulates tanycytes in the adult niche. NrCAM is strongly expressed in adult mouse tanycytes.
View Article and Find Full Text PDFNature
December 2020
The Department of Cell Biology, Duke University Medical School, Durham, NC, USA.
Perisynaptic astrocytic processes are an integral part of central nervous system synapses; however, the molecular mechanisms that govern astrocyte-synapse adhesions and how astrocyte contacts control synapse formation and function are largely unknown. Here we use an in vivo chemico-genetic approach that applies a cell-surface fragment complementation strategy, Split-TurboID, and identify a proteome that is enriched at astrocyte-neuron junctions in vivo, which includes neuronal cell adhesion molecule (NRCAM). We find that NRCAM is expressed in cortical astrocytes, localizes to perisynaptic contacts and is required to restrict neuropil infiltration by astrocytic processes.
View Article and Find Full Text PDFAnn Neurol
May 2006
Department of Neurology, University of Rochester Medical Center, NY 14642, USA.
Objective: Glial progenitor cells are abundant in adult human white matter. This study was designed to identify signaling pathways regulating their self-renewal and fate.
Methods: We compared the transcriptional profiles of freshly sorted adult human white matter progenitor cells (WMPCs), purified by A2B5-based immunomagnetic sorting, with those of the white matter from which they derived.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!