Schrenk spruce leaf litter decomposition varies with snow depth in the Tianshan Mountains.

Sci Rep

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, 311300, China.

Published: November 2020

Seasonal snowfall, a sensitive climate factor and the main form of precipitation in arid areas, is important for forest material circulation and surface processes and profoundly impacts litter decomposition and element turnover. However, how the thickness and duration of snow cover affect litter decomposition and element release remain unclear. Thus, to understand the effects of snow on litter decomposition, fiber degradation and their relationships with soil properties, a field litterbag experiment was conducted under no, thin, medium, and thick snow cover in a Schrenk spruce (Picea schrenkiana) forest gap in the Tianshan Mountains. The snow cover period exhibited markedly lower rates of decomposition than the snow-free period. The litter lignin, cellulose and N concentrations in the pregrowing season and middle growing season were significantly higher than those in the deep-freeze period, and the litter C and P concentrations were significantly higher during the onset of the freeze-thaw period, deep-freeze period and thaw period than in the late growing season. The litter cellulose, C and N concentrations were significantly higher under thick snow cover than under no snow cover in most stages. Moreover, the correlations among litter mass, cellulose, lignin/cellulose and soil bulk density varied with snow cover depth. The temporal variations and snow cover depth affected the decomposition process significantly. The former affected lignin, cellulose and P, and the latter affected cellulose, C and N and changed the litter-soil properties relationship. These differences provide references for understanding how winter conditions affect material cycling and other ecological processes under climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658357PMC
http://dx.doi.org/10.1038/s41598-020-76368-9DOI Listing

Publication Analysis

Top Keywords

snow cover
28
litter decomposition
16
snow
9
schrenk spruce
8
litter
8
tianshan mountains
8
decomposition element
8
thick snow
8
period litter
8
lignin cellulose
8

Similar Publications

High-Arctic environments are facing an elevated pace of warming and increasing human activities, making them more susceptible to the introduction and spread of alien species. We investigated the role of human disturbance in facilitating the spread of a native plant () in a high-Arctic natural environment close to Isfjord Radio station and along adjacent hiking trails at Kapp Linné, Svalbard. We reconstructed the spatial pattern of the arrival and spread of at Kapp Linné by combining historical records of the species occurrence (1928-2018) with a contemporary survey of the plant abundance along the main hiking trail (2023 survey) and tested the relative effects of altitude and proximity to hiking trails on the species density via a generalised linear model (GLM).

View Article and Find Full Text PDF

Mountain regions of Central Asia are experiencing strong influences from climate change, with significant reductions in snow cover and glacial reserves. A comprehensive assessment of the potential consequences under the worst-case climate scenario is vital for adaptation measures throughout the region. Water balance analysis in the Naryn River basin was conducted for the baseline period of 1981-2000 including potential changes under the worst-case SSP5-8.

View Article and Find Full Text PDF

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

Impact of civil war on the land cover in Myanmar.

Environ Monit Assess

January 2025

College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China.

Exploring the response relationship between civil war, population and land cover change is of great practical significance for social stability in Myanmar. However, the ongoing civil war in Myanmar hinders direct understanding of the situation on the ground, which in turn limits detailed study of the intricate relationship between the dynamics of the civil war and its impact on population and land. Therefore, this paper explores the response relationship between civil war conflict and population and land cover change in Myanmar from 2010 to 2020 from the perspective of remote sensing using the land cover data we produced, the open spatial demographics data, and the armed conflict location and event data project.

View Article and Find Full Text PDF

Pakistan, like many other regions around the world, is experiencing the impacts of climate change, particularly in its northern region. These changes have adverse impacts on ecosystems and biodiversity. Herein, we have investigated future projections of temperature and precipitation trends for three periods historical (HT = 1975-2005), near-term (NT = 2010-2029), and mid-term (MT = 2030-2050) using climate model intercomparison projects along with global climate models (GCMs) including RCP4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!