Inflammasomes have been implicated in the detection and clearance of a variety of bacterial pathogens, but little is known about whether this innate sensing mechanism has any regulatory effect on the expression of stimulatory ligands by the pathogen. During infection with and many other pathogens, flagellin is a major activator of NLRC4 inflammasome-mediated macrophage pyroptosis and pathogen eradication. switches to a flagellin-low phenotype as infection progresses to avoid this mechanism of clearance by the host. However, the host cues that perceives to undergo this switch remain unclear. Here, we report an unexpected role of the NLRC4 inflammasome in promoting expression of its microbial ligand, flagellin, and identify a role for type 1 IFN signaling in switching of to a flagellin-low phenotype. Early in infection, activation of NLRC4 by flagellin initiates pyroptosis and concomitant release of lysophospholipids which in turn enhance expression of flagellin by thereby amplifying its ability to elicit cell death. TRIF-dependent production of type 1 IFN, however, later represses NLRC4 and the lysophospholipid biosynthetic enzyme iPLA2, causing a decline in intracellular lysophospholipids that results in down-regulation of flagellin expression by These findings reveal a previously unrecognized immune-modulating regulatory cross-talk between endosomal TLR signaling and cytosolic NLR activation with significant implications for the establishment of infection with .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703570 | PMC |
http://dx.doi.org/10.1073/pnas.2002747117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!