Purpose: The aim of this study was to depict the signal intensity pattern of the normal oculomotor nerve demonstrated on contrast-enhanced three-dimensional fluid-attenuated inversion recovery images.
Materials And Methods: Eighty-one patients were included in the study. Contrast-enhanced three-dimensional fluid-attenuated inversion recovery images with magnetisation-prepared rapid acquisition were reconstructed and evaluated in the coronal plane. The signal intensity of the cisternal segment of the oculomotor nerve was graded into a visual scale of 1 to 5 as compared to the white matter, grey matter and the pituitary stalk. The signal intensity ratio of the oculomotor nerve was consequently measured.
Results: By using the visual scale, more than half of the oculomotor nerves showed higher signal intensity than the grey matter signal on contrast-enhanced three-dimensional fluid-attenuated inversion recovery images (59.3-80.2%). It can demonstrate a signal intensity similar to the pituitary stalk (14.8%) by visualisation. None of them showed signal intensity equal to the normal white matter signal. By signal intensity measurement, the mean signal intensity ratio of oculomotor nerves to white matter equals 1.54±0.20 (95% confidence interval (CI) 1.51-1.57); mean signal intensity ratio to grey matter equals 1.16±0.15 (95% CI 1.14-1.18); mean signal intensity ratio to the pituitary stalk equals 0.68±0.10 (95% CI 0.64-0.70).
Conclusions: The normal oculomotor nerve visualised on contrast-enhanced three-dimensional fluid-attenuated inversion recovery images has a higher signal intensity than the white matter and may have a signal intensity similar to the grey matter or the pituitary stalk. The high signal intensity of the oculomotor nerve in contrast-enhanced three-dimensional fluid-attenuated inversion recovery should not be misinterpreted as a pathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041401 | PMC |
http://dx.doi.org/10.1177/1971400920970918 | DOI Listing |
J Food Sci
January 2025
Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
This study aimed to investigate the potential hypoglycemic mechanism of red ginseng acidic polysaccharides (RGAP) from the perspective of fatty acid (FA) regulation. A high-glucose/high-fat diet in conjunction with streptozotocin administration was employed to establish type 2 diabetes mellitus (T2DM) rat models, and their fecal FAs were detected using the liquid chromatography-mass spectrometry (LC-MS) method. RGAP treatment alleviated the polyphagia, polydipsia, weight loss, and hyperglycemia observed in T2DM rats.
View Article and Find Full Text PDFChemistry
January 2025
Shanghai Institute of Materia Medica Chinese Academy of Sciences, State Key Laboratory of Drug Research, CHINA.
The fluorescent imaging of pathologically accumulated β-amyloid (Aβ) proteins is of significant importance to the diagnosis of Alzheimer's disease (AD). In the paper, we prepared two new NIR probes, NIR-1 and NIR-2, through hydrophilic modification of introducing water-soluble bioactive groups such as polyethylene glycol (PEG) and morpholine to tune in vivo pharmacokinetics for specific detection of soluble and insoluble Aβ species. The in vitro assessments confirm that both NIR-1 and NIR-2 display strong near-infrared (NIR) fluorescence (FL) enhancement upon association with Aβ42 monomers, oligomers or aggregates (λem > 670 nm) and show high sensitive, rapid and selective response towards Aβ42 species.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
In this work, a site-selective functionalization strategy is proposed for modifying fluorescent dyes in the plasmonic nanopore, which highlights building optoelectronic dual-signal sensing interfaces at "hotspots" locations to construct multiparameter detection nanosensor. Finite-difference time-domain (FDTD) simulations confirmed the high-intensity electromagnetic field due to plasmonic nanostructure. It is demonstrated that adjusting the distance between the nanopore inner wall and fluorophore prevented the fluorescence quenching, resulting in more than a thirty fold fluorescence enhancement.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari, Japan.
Purpose: Redox homeostasis plays a key role in regulating the overall health and development of organisms. This study aimed to develop a compact and mobile continuous-wave (CW) electron paramagnetic resonance (EPR) imager to facilitate stable, highly sensitive fast three-dimensional (3D) whole-body imaging of nitroxide-infused mice.
Methods: A multiturn loop gap resonator with a diameter of 30 mm and length of 35 mm was designed for whole-body EPR imaging.
Trees (Berl West)
January 2025
Department of Geography, Johannes Gutenberg University, 55099 Mainz, Germany.
Key Message:
Abstract: Tree-rings are the prime archive for high-resolution climate information over the past two millennia. However, the accuracy of annually resolved reconstructions from tree-rings can be constrained by what is known as climate signal age effects (CSAE), encompassing changes in the sensitivity of tree growth to climate over their lifespans. Here, we evaluate CSAE in from an upper tree line site in the Spanish central Pyrenees, Lake Gerber, which became a key location for reconstructing western Mediterranean summer temperatures at annual resolution.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!