Biomineralization processes are of key importance in the biogeochemical cycling of metals and other elements by microorganisms, and several studies have highlighted the potential applications of nanoparticle synthesis via biomineralization. The roles played by proteins in the transformation and biologically induced biomineralization of metals by microorganisms is not well understood, despite the interactions of protein and nanoparticles at mineral interfaces attracting much interest in various emerging fields for novel biomaterial synthesis. Here, we have elucidated the association and involvement of fungal proteins in the formation of biogenic copper carbonate nanoparticles (CuNPs) using a carbonate-enriched biomass-free ureolytic fungal culture supernatant. Proteomic analysis was conducted that identified the major proteins present in the culture supernatant. Of the proteins identified, triosephosphate isomerase (TPI) exhibited a strong affinity to the CuNPs, and the impact of purified TPI on CuNP formation was studied in detail. The combined use of scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) confirmed that TPI played an important role in controlling the morphology and structure of the nanomaterials. Fourier transform infrared spectroscopy (FTIR) was applied to examine conformational changes of the proteins to further clarity the interaction mechanisms with CuNPs during biomineralization. Such analyses revealed unfolding of proteins on the mineral surface and an increase in β sheets within the protein structure. These results extend understanding of how microbial systems can influence biomineral formation through protein secretion, the mechanisms involved in formation of complex protein/inorganic systems, and provide useful guidelines for the synthesis of inorganic-protein based nanomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2020.10.044 | DOI Listing |
Molecules
December 2024
Dipartimento di Chimica, Università degli Studi di Torino, Via P.Giuria 7, 10125 Torino, Italy.
Azurite, a natural mineral pigment consisting of basic copper carbonate (2CuCO·Cu(OH)), is one of the Middle Ages' most common blue pigments. Why paintings originally coated with azurite appear blackened today remains debated. Using a non-invasive multi-analytical approach, the study analysed several unexpectedly black-appearing details (objects such as books or clothing such as veils, robes, or mantles) in Antoine de Lonhy's works.
View Article and Find Full Text PDFBiomater Adv
January 2025
Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China. Electronic address:
The current unavailability of efficient myocardial repair therapies constitutes a significant bottleneck in the clinical management of myocardial infarction (MI). Ginsenoside Rb1 (GRb1) has emerged as a compound with potential benefits in safeguarding myocardial cells and facilitating the regeneration of myocardial tissue. However, its efficacy in treating MI-related ischemic conditions is hampered by its low bioavailability and inadequate angiogenic properties.
View Article and Find Full Text PDFNat Commun
December 2024
School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China.
Water oxidation presents a promising avenue for hydrogen peroxide (HO) production. However, the reliance on alkaline bicarbonate electrolytes as an intermediate has limitations, such as HO decomposition and a narrow pH effectiveness range (7-9), restricting its utility across wider pH ranges. This study unveils a crystal OH mediating pathway that stabilizes SOOH* as a crucial intermediate.
View Article and Find Full Text PDFHeliyon
August 2024
Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
In this article, copper carbonate analog with good peroxidase-like activity was successfully synthesized for the first time a simple co-precipitation of CuSO▪5HO and NaCO. The obtained copper carbonate analog exhibited excellent intrinsic peroxidase-like activity towards a classical peroxidase substrate of 3, 3', 5, 5' -tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (HO) under an acidic environment. The study of the catalytic mechanism confirmed that the hydroxyl radical produced from the decomposition of HO is the main reactive oxygen species responsible for the catalytic oxidation of TMB to oxTMB.
View Article and Find Full Text PDFSensors (Basel)
July 2024
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
Excessive ammonia nitrogen can potentially compromise the safety of drinking water. Therefore, developing a rapid and simple detection method for ammonia nitrogen in drinking water is of great importance. Nickel-copper hydroxides exhibit strong catalytic capabilities and are widely applied in ammonia nitrogen oxidation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!